Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Unstable intraguild predation causes establishment failure of a globally invasive species.

Tytuł:
Unstable intraguild predation causes establishment failure of a globally invasive species.
Autorzy:
Tuckett QM; Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Ruskin, Florida, 33570, USA.
Deacon AE; Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago.
Fraser D; Department of Biology, Siena College, Loudonville, New York, 12211, USA.
Lyons TJ; Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Ruskin, Florida, 33570, USA.
Lawson KM; Department of Biological Sciences, Auburn University, Auburn, Alabama, 36849, USA.
Hill JE; Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Ruskin, Florida, 33570, USA.
Źródło:
Ecology [Ecology] 2021 Aug; Vol. 102 (8), pp. e03411. Date of Electronic Publication: 2021 Jul 18.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Washington, DC : Ecological Society of America
Original Publication: Brooklyn, NY : Brooklyn Botanical Garden
MeSH Terms:
Introduced Species*
Predatory Behavior*
Animals ; Florida ; Humans ; Infant, Newborn
References:
Arim, M., and P. A. Marquet. 2004. Intraguild predation: A widespread interaction related to species biology. Ecology Letters 7:557-564.
Arthington, A. H. 1989. Diet of Gambusia affinis and Poecilia reticulata (Pisces:Poeciliidae) in streams of Southeastern Queensland, Australia. Asian Fisheries Science 2:93-212.
Azevedo-Santos, V. M., J. R. S. Vitule, F. M. Pelicice, E. García-Berthou, and D. Simberloff. 2016. Nonnative fish to control Aedes mosquitoes: A controversial, harmful tool. BioScience 67:84-90.
Bajer, P. G., T. K. Cross, J. D. Lechelt, C. J. Chizinski, M. J. Weber, and P. W. Sorensen. 2015. Across-ecoregion analysis suggests a hierarchy of ecological filters that regulate recruitment of a globally invasive fish. Diversity and Distributions 21:500-510.
Bassar, R. D., T. Simon, W. Roberts, J. Travis, and D. N. Reznick. 2017. The evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple community. Evolution 71:373-385.
Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. lme4: Linear mixed-effects models using eigen and S4. R package version 1.1-10. http://CRAN.R-project.org/package=lme4.
Belk, M. C., and C. Lydeard. 1994. Effect of Gambusia holbrooki on a similar-sized, syntopic poeciliid, Heterandria formosa: Competitor or predator? Copeia 1994:296-302.
Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík, J. R. U. Wilson, and D. M. Richardson. 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26:333-339.
Camacho-Cervantes, M., A. F. Ojanguren, O. Domínguez-Domínguez, and A. E. Magurran. 2018. Sociability between invasive guppies and native topminnows. PLoS ONE 13:e0192539.
Cameron, A. C., and P. K. Trivedi. 1990. Regression-based tests for overdispersion in the Poisson model. Journal of Econometrics 46:347-364.
Deacon, A. E., I. W. Ramnarine, and A. E. Magurran. 2011. How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6:e24416.
DeRivera, C., G. Ruiz, A. Hines, and P. Jivoff. 2005. Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology 86:3364-3376.
Diehl, S., and M. Feißel. 2000. Effects of enrichment on three-level food chains with omnivory. American Naturalist 155:200-218.
Fausch, K. D. 1998. Interspecific competition and juvenile Atlantic salmon (Salmo salar): On testing effects and evaluating the evidence across scales. Canadian Journal of Fisheries and Aquatic Sciences 55:218-231.
Fraser, D. F., and B. A. Lamphere. 2013. Experimental evaluation of predation as a facilitator of invasion success in a stream fish. Ecology 94:640-649.
Furness, A. I., and D. N. Reznick. 2014. The comparative ecology of a killifish (Rivulus hartii) across aquatic communities differing in predation intensity. Evolutionary Ecology Research 16:249-265.
Galat, D. L., and B. Robertson. 1992. Response of endangered Poeciliopsis occidentalis sonoriensis in the Río Yaqui drainage, Arizona, to introduced Gambusia affinis. Environmental Biology of Fishes 33:249-264.
Gilliam, J. T., D. F. Fraser, and M. Alkins-koo. 1993. Structure of a tropical stream fish community: A role for biotic interactions. Ecology 74:1856-1870.
Hastings, A., K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y. C. Lai, A. Morozov, S. Petrovskii, K. Scranton, and M. Lou Zeeman. 2018. Transient phenomena in ecology. Science 361:eaat6412.
Henkanaththegedara, S. M., and C. A. Stockwell. 2013. The role of gape-limitation in intraguild predation between endangered Mohave tui chub and non-native western mosquitofish. Ecology of Freshwater Fish 22:11-20.
Henkanaththegedara, S. M., and C. A. Stockwell. 2014. Intraguild predation may facilitate coexistence of native and non-native fish. Journal of Applied Ecology 51:1057-1065.
Hill, J. E., A. R. Kapuscinski, and T. Pavlowich. 2011. Fluorescent transgenic zebra danio more vulnerable to predators than wild-type fish. Transactions of the American Fisheries Society 140:1001-1005.
Hill, J. E., L. G. Nico, C. E. Cichra, and C. R. Gilbert. 2004. Prey vulnerability to peacock cichlids and largemouth bass based on predator gape and prey body depth. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 58:47-56.
Hill, J. E., and Q. M. Tuckett. 2018. Abiotic and biotic contributions to invasion resistance for ornamental fish in west-central Florida, USA. Hydrobiologia 817:363-377.
HilleRisLambers, R., and U. Dieckmann. 2003. Competition and predation in simple food webs: Intermediately strong trade-offs maximize coexistence. Proceedings of the Royal Society B 270:2591-2598.
Holt, R. D., and G. A. Polis. 1997. A theoretical framework for intraguild predation. American Naturalist 149:745-764.
Hosmer, D. W., S. Lemeshow, and R. X. Sturdivant. 2013. Applied logistic regression. Third edition. John Wiley & Sons, Hoboken, New Jersey, USA.
Janssen, A., M. W. Sabelis, S. Magalhães, M. Montserrat, and T. Van Der Hammen. 2007. Habitat structure affects intraguild predation. Ecology 88:2713-2719.
Jungwirth, A., V. Balzarini, M. Zöttl, A. Salzmann, M. Taborsky, and J. G. Frommen. 2019. Long-term individual marking of small freshwater fish: the utility of Visual Implant Elastomer tags. Behavioral Ecology and Sociobiology 73:49.
Latremouille, D. N. 2003. Fin erosion in aquaculture and natural environments. Reviews in Fisheries Science 11:315-335.
Levine, J. M., P. B. Adler, and S. G. Yelenik. 2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters 7:975-989.
Magellan, K., and E. García-Berthou. 2015. Influences of size and sex on invasive species aggression and native species vulnerability: a case for modern regression techniques. Reviews in Fish Biology and Fisheries 25:537-549.
Magurran, A. E. 2005. Evolutionary ecology: The Trinidadian guppy. Oxford University Press, Oxford, UK.
Meffe, G. K. 1985. Predation and species replacement in American Southwestern fishes: A case study. Southwestern Association of Naturalists 30:173-187.
Mills, M. D., R. B. Rader, and M. C. Belk. 2004. Complex interactions between native and invasive fish: The simultaneous effects of multiple negative interactions. Oecologia 141:713-721.
Moore, J. C., D. E. Walter, and H. W. Hunt. 1988. Below-ground detrital food webs. Annual Review of Entomology 33:419-439.
Morin, P. 1999. Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology 80:752-760.
Myers, G. C. 1965. Gambusia, the fish destroyer. Tropical Fish Hobbyist 13:31-32, 53-54.
Mylius, S. D., K. Klumpers, A. M. De Roos, and L. Persson. 2001. Impact of intraguild predation and stage structure on simple communities along a productivity gradient. American Naturalist 158:259-276.
Polis, G. A., C. A. Myers, and R. D. Holt. 1989. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review of Ecology and Systematics 20:297-330.
Pyke, G. H. 2008. Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species. Annual Review of Ecology, Evolution, and Systematics 39:171-191.
R Core Development Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org.
Reznick, D. N., and C. Ghalambor. 2005. Can commercial fishing cause evolution? Answers from guppies (Poecilia reticulata). Canadian Journal of Fisheries and Aquatic Sciences 62:791-801.
Reznick, D. N., et␣al. 2019. Eco-evolutionary feedbacks predict the time course of rapid life-history evolution. American Naturalist 194:671-692.
Rincón, P. A., A. M. Correas, F. Morcillo, P. Risueño, and J. Lobón-Cerviá. 2002. Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. Journal of Fish Biology 61:1560-1585.
Rosenheim, J. A., H. K. Kaya, L. E. Ehler, J. J. Marois, and B. A. Jaffee. 1995. Intraguild predation among biological-control agents: Theory and evidence. Biological Control 5:303-335.
Rosenheim, J. A., L. R. Wilhoit, and C. A. Armer. 1993. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439-449.
Rowe, D. K., J. P. Smith, and C. Baker. 2007. Agonistic interactions between Gambusia affinis and Galaxias maculatus: Implications for whitebait fisheries in New Zealand Rivers. Journal of Applied Ichthyology 23:668-674.
Segev, O., M. Mangel, and L. Blaustein. 2009. Deleterious effects by mosquitofish (Gambusia affinis) on the endangered fire salamander (Salamandra infraimmaculata). Animal Conservation 12:29-37.
Smith, J. A., E. Donadio, J. N. Pauli, M. J. Sheriff, O. R. Bidder, and A. D. Middleton. 2019. Habitat complexity mediates the predator-prey space race. Ecology 100:1-9.
Sutton, T. M., R. A. Zeiber, and B. E. Fisher. 2013. Agonistic behavioral interactions between introduced western mosquitofish and native topminnows. Journal of Freshwater Ecology 28:1-16.
Taylor, R. C., J. C. Trexler, and W. F. Loftus. 2001. Separating the effects of intra- and interspecific age-structured interactions in an experimental fish assemblage. Oecologia 127:143-152.
Thompson, K. A., J. E. Hill, and L. G. Nico. 2012. Eastern mosquitofish resists invasion by nonindigenous poeciliids through agonistic behaviors. Biological Invasions 14:1515-1529.
Tsurui-Sato, K., S. Fujimoto, O. Deki, T. Suzuki, H. Tatsuta, and K. Tsuji. 2019. Reproductive interference in live-bearing fish: the male guppy is a potential biological agent for eradicating invasive mosquitofish. Scientific Reports 9:1-9.
Tuckett, Q. M., J. L. Ritch, K. M. Lawson, and J. E. Hill. 2017. Landscape-scale survey of non-native fishes near ornamental aquaculture facilities in Florida, USA. Biological Invasions 19:223-237.
Walsh, M. R., and D. N. Reznick. 2010. Influence of the indirect effects of guppies on life-history evolution in Rivulus hartii. Evolution 64:1583-1593.
Williamson, M. 2006. Explaining and predicting the success of invading species at different stages of invasion. Biological Invasions 8:1561-1568.
Zenni, R. D., and M. A. Nunez. 2013. The elephant in the room: The role of failed invasions in understanding invasion biology. Oikos 122:801-815.
Contributed Indexing:
Keywords: Gambusia holbrooki; Poecilia reticulata; biotic resistance; interference competition; invasion; nonnative species
Entry Date(s):
Date Created: 20210524 Date Completed: 20210906 Latest Revision: 20210906
Update Code:
20240105
DOI:
10.1002/ecy.3411
PMID:
34028015
Czasopismo naukowe
Biotic resistance is often posited, but rarely known, to be the cause of invasion failure. Competition and predation are the most frequently identified processes that may prevent or limit the establishment of nonnative species. Interactions between nonnative and native species that involve intraguild predation (IGP) are very common in nature, although theory predicts most IGP systems should be unstable and lead to extinction. If this prediction is true, the frequency of invasion failures due to IGP may be underappreciated because of their fleeting nature and, thus, studies of unstable IGP systems are lacking, despite the opportunities they offer for understanding the factors affecting their unstable dynamics. We investigated a failed invasion involving an IGP relationship. In Florida, the guppy (Poecilia reticulata), a worldwide invader, fails to establish in the presence of eastern mosquitofish (Gambusia holbrooki). We tested whether and how resident mosquitofish cause guppy invasion failure using replicated mesocosm and aquarium trials. Both the predator and competitor components of the IGP relationship were strongly asymmetrical, with large impacts on guppies. We identified two effects, direct consumption of neonates and aggressive interference competition, that limited survival and recruitment. The highly unstable nature of this IGP relationship is the primary cause of the failure of the guppy to establish in Florida. Our study shows that the transient nature of an ephemeral IGP relationship can yield important insights into the underlying causes of invasion failure, including the role of strong biotic resistance.
(© 2021 by the Ecological Society of America.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies