Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Light, nitrogen supply, and neighboring plants dictate costs and benefits of nitrogen fixation for seedlings of a tropical nitrogen-fixing tree.

Tytuł:
Light, nitrogen supply, and neighboring plants dictate costs and benefits of nitrogen fixation for seedlings of a tropical nitrogen-fixing tree.
Autorzy:
Taylor BN; Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.; The Arnold Arboretum, Harvard University, 1300 Centre Street, Boston, MA, 02131, USA.
Menge DNL; Department of Ecology, Evolution, and Environmental Biology, Columbia University, 10th Floor Schermerhorn Extension, 1200 Amsterdam Avenue, New York, NY, 10027, USA.
Źródło:
The New phytologist [New Phytol] 2021 Sep; Vol. 231 (5), pp. 1758-1769. Date of Electronic Publication: 2021 Jun 22.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Fabaceae*
Trees*
Cost-Benefit Analysis ; Ecosystem ; Nitrogen ; Nitrogen Fixation ; Seedlings ; Soil
References:
Anderson DR. 2008. Model based inference in the life sciences: a primer on evidence. New York, NY, USA: Springer.
Barron AR, Purves DW, Hedin LO. 2011. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165: 511-520.
Batterman SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS. 2013. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502: 224-227.
Bloom A, Chapin F, Mooney H. 1985. Resource limitation in plants - an economic analogy. Annual Review of Ecology and Systematics 16: 363-392.
Bolker BM, R Development Core Team. 2017. bbmle: tools for general maximum likelihood estimation. [WWW document] URL https://cran.r-project.org/package=bbmle [accessed 3 August 2020].
Brookshire ENJ, Wurzburger N, Currey B, Menge DNL, Oatham MP, Roberts C. 2019. Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest. Scientific Reports 9: e7571.
Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65: 23-35.
Canham CD, Berkowitz AR, Kelly VR, Lovett GM, Ollinger SV, Schnurr J. 1996. Biomass allocation and multiple resource limitation in tree seedlings. Canadian Journal of Forest Research 26: 1521-1530.
Chapin FS, Bloom AJ, Field CB, Waring RH. 1987. Plant responses to multiple environmental factors: physiological ecology provides tools for studying how interacting environmental resources control plant growth. BioScience 37: 49-57.
Chapin FS III, Conway AJ, Johnstone JF, Hollingsworth TN, Hollingsworth J. 2016. Absence of net long-term successional facilitation by alder in a boreal Alaska floodplain. Ecology 97: 2986-2997.
Chapin F III, Matson P, Vitousek P. 2011. Principles of terrestrial ecosystem ecology. New York, NY, USA: Springer.
Chapin FS III, Walker L, Fastie C, Sharman L. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs 64: 149-175.
Chou CB, Hedin LO, Pacala SW. 2018. Functional groups, species and light interact with nutrient limitation during tropical rainforest sapling bottleneck. Journal of Ecology 106: 157-167.
Dovrat G, Masci T, Bakhshian H, Mayzlish Gati E, Golan S, Sheffer E. 2018. Drought-adapted plants dramatically downregulate dinitrogen fixation: evidences from Mediterranean legume shrubs. Journal of Ecology 106: 1534-1544.
Eissenstat DM. 1992. Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition 15: 763-782.
Fisher JB, Sitch S, Malhi Y, Fisher RA, Huntingford C, Tan S-Y. 2010. Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Global Biogeochemical Cycles 24: GB1014.
Flores EM. 2002a. Pentaclethra macroloba (Willd.) Kuntze. In: Vozzo J, ed. Tropical tree seed manual: agricultural handbook. San Jose, Costa Rica: Academia Nacional de Ciencias de Costa Rica, 601-604.
Flores EM. 2002b. Virola koschnyi Warb. In: Vozzo J, ed. Tropical tree seed manual: agricultural handbook. San Jose, Costa Rica: Academia Nacional de Ciencias de Costa Rica, 772-774.
Gei M, Rozendaal DMA, Poorter L, Bongers F, Sprent JI, Garner MD, Aide TM, Andrade JL, Balvanera P, Becknell JM et al. 2018. Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution 2: 1104-1111.
Gutschick V. 1981. Evolved strategies in nitrogen acquisition by plants. American Naturalist 118: 607-637.
Kiers ET, Rousseau RA, West SA, Denison RF. 2003. Host sanctions and the legume-rhizobium mutualism. Nature 425: 78-81.
van Kleunen M, Fischer M. 2005. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytologist 166: 49-60.
Knops JMH, Ritchie ME, Tilman D. 2000. Selective herbivory on a nitrogen fixing legume (Lathyrus venosus) influences productivity and ecosystem nitrogen pools in an oak savanna. Ecoscience 7: 166-174.
Lai HR, Hall JS, Batterman SA, Turner BL, van Breugel M. 2018. Nitrogen fixer abundance has no effect on biomass recovery during tropical secondary forest succession. Journal of Ecology 106: 1415-1427.
Levy-Varon JH, Batterman SA, Medvigy D, Xu X, Hall JS, van Breugel M, Hedin LO. 2019. Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nature Communications 10: e5637.
Mattson W. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11: 119-161.
McDade L, Hartshorn G. 1994. La Selva: ecology and natural history of a Neotropical rain forest. Chicago, IL, USA: University of Chicago Press.
Menge DNL, Batterman SA, Hedin LO, Liao W, Pacala SW, Taylor BN. 2017. Why are nitrogen-fixing trees rare at higher compared to lower latitudes? Ecology 98: 3127-3140.
Menge DNL, Chazdon RL. 2016. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests. New Phytologist 209: 965-977.
Menge DNL, DeNoyer JL, Lichstein JW. 2010. Phylogenetic constraints do not explain the rarity of nitrogen-fixing trees in late-successional temperate forests. PLoS ONE 5.e12056.
Menge DNL, Levin SA, Hedin LO. 2008. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proceedings of the National Academy of Sciences, USA 105: 1573-1578.
Menge DNL, Levin SA, Hedin LO. 2009a. Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. American Naturalist 174: 465-477.
Menge DNL, Pacala SW, Hedin LO. 2009b. Emergence and maintenance of nutrient limitation over multiple timescales in terrestrial ecosystems. American Naturalist 173: 164-175.
Menge DNL, Wolf AA, Funk JL. 2015. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nature Plants 1: e15064.
Minucci JM, Miniat CF, Teskey RO, Wurzburger N. 2017. Tolerance or avoidance: drought frequency determines the response of an N2-fixing tree. New Phytologist 215: 434-442.
Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, Heskel MA, Kingsolver JG, Maclean HJ, Masel J, Maughan H et al. 2015. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115: 293-301.
Nasto MK, Osborne BB, Lekberg Y, Asner GP, Balzotti CS, Porder S, Taylor PG, Townsend AR, Cleveland CC. 2017. Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rain forest. New Phytologist 214: 1506-1517.
Pan Y, Birdsey RA, Phillips OL, Jackson RB. 2013. The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics 44: 593-622.
Pate JS, Layzell DB, Atkins CA. 1979. Economy of carbon and nitrogen in a nodulated and nonnodulated (NO3-grown) legume. Plant Physiology 64: 1083-1088.
Poorter H, Nagel O. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology 27: 595-607.
R Core Team. 2017. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rastetter EB, Vitousek PM, Field C, Shaver GR, Herbert D, Ågren GI. 2001. Resource optimization and symbiotic nitrogen fixation. Ecosystems 4: 369-388.
Ritchie ME, Tilman D. 1995. Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecology 76: 2648-2655.
Sprent JI. 2009. Legume nodulation: a global perspective. Oxford, UK: Wiley-Blackwell.
Staccone AP, Kou-Giesbrecht S, Taylor BN, Menge DNL. 2021. Nitrogen-fixing trees have no net effect on forest growth in the coterminous United States. Journal of Ecology 109: 877-887.
Taylor BN, Chazdon RL, Bachelot B, Menge DNL. 2017. Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests. Proceedings of the National Academy of Sciences, USA 114: 8817-8822.
Taylor BN, Chazdon RL, Menge DNL. 2019. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637.
Taylor BN, Menge DNL. 2018. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants 4: 655-661.
ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino J-F, Prévost M-F, Spichiger R, Castellanos H et al. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443: 444-447.
Vitousek P, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI. 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57: 1-45.
Vitousek P, Field C. 1999. Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46: 179-202.
Vitousek P, Howarth R. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13: 87-115.
Vitousek PM, Menge DNL, Reed SC, Cleveland CC. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 368: e20130119.
Wolf AA, Funk JL, Menge DNL. 2017. The symbionts made me do it: legumes are not hardwired for high nitrogen concentrations but incorporate more nitrogen when inoculated. New Phytologist 213: 690-699.
Contributed Indexing:
Keywords: Pentaclethra macroloba; Virola koschnyi; biomass allocation; growth; neighbor interactions; nitrogen fixation
Substance Nomenclature:
0 (Soil)
N762921K75 (Nitrogen)
Entry Date(s):
Date Created: 20210524 Date Completed: 20210812 Latest Revision: 20210812
Update Code:
20240105
DOI:
10.1111/nph.17508
PMID:
34028829
Czasopismo naukowe
The ability to fix nitrogen may confer a competitive advantage or disadvantage to symbiotic nitrogen-fixing plants depending on the availability of soil nitrogen and energy to fuel fixation. Understanding these costs and benefits of nitrogen fixation is critical to predicting ecosystem dynamics and nutrient cycling. We grew inoculated (with symbiotic bacteria) and uninoculated seedlings of Pentaclethra macroloba (a nitrogen-fixing tree species) both in isolation and with Virola koschnyi (a nonfixing species) under gradients of light and soil nitrogen to assess how the ability to fix nitrogen and fixation activity affect growth, biomass allocation, and responses to neighboring plants. Inoculation itself did not provide a growth advantage to nitrogen fixers, regardless of nitrogen limitation status. Higher nitrogen fixation rates increased biomass growth similarly for nitrogen-limited and nitrogen-saturated fixers. Nodule production was offset by reduced fine-root biomass for inoculated nitrogen fixers, resulting in no change in total belowground allocation associated with nitrogen fixation. Under nitrogen-limited conditions, inoculated nitrogen fixers partially downregulated fixation in the presence of a nonfixing neighbor. These results suggest that nitrogen fixation can provide a growth advantage, even under nitrogen-saturated conditions, and that nitrogen fixers may reduce fixation rates to minimize facilitation of neighbors.
(© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies