Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Impact of FtsZ Inhibition on the Localization of the Penicillin Binding Proteins in Methicillin-Resistant Staphylococcus aureus.

Tytuł:
Impact of FtsZ Inhibition on the Localization of the Penicillin Binding Proteins in Methicillin-Resistant Staphylococcus aureus.
Autorzy:
Ferrer-González E; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
Huh H; Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA.
Al-Tameemi HM; Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA.
Boyd JM; Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA.
Lee SH; Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA.; Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, USA.
Pilch DS; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
Źródło:
Journal of bacteriology [J Bacteriol] 2021 Jul 22; Vol. 203 (16), pp. e0020421. Date of Electronic Publication: 2021 Jul 22.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Washington, DC : American Society for Microbiology
MeSH Terms:
Anti-Bacterial Agents/*pharmacology
Bacterial Proteins/*antagonists & inhibitors
Cytoskeletal Proteins/*antagonists & inhibitors
Methicillin-Resistant Staphylococcus aureus/*metabolism
Penicillin-Binding Proteins/*metabolism
Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; Cell Wall/genetics ; Cell Wall/metabolism ; Cytoskeletal Proteins/genetics ; Cytoskeletal Proteins/metabolism ; Drug Synergism ; Methicillin-Resistant Staphylococcus aureus/drug effects ; Methicillin-Resistant Staphylococcus aureus/genetics ; Oxacillin/pharmacology ; Penicillin-Binding Proteins/genetics ; Protein Transport/drug effects ; beta-Lactams/pharmacology
References:
MMWR Morb Mortal Wkly Rep. 2019 Mar 08;68(9):214-219. (PMID: 30845118)
Drug Resist Updat. 2011 Apr;14(2):68-9. (PMID: 21444235)
FEMS Microbiol Rev. 2008 Mar;32(2):234-58. (PMID: 18266856)
Mol Microbiol. 2003 Nov;50(3):871-81. (PMID: 14617148)
Annu Rev Biophys. 2020 May 6;49:309-341. (PMID: 32092282)
J Bacteriol. 2000 Feb;182(4):1074-9. (PMID: 10648534)
Mol Microbiol. 2015 Oct;98(2):218-42. (PMID: 26135358)
Antimicrob Agents Chemother. 2016 Jun 20;60(7):4290-6. (PMID: 27161635)
Biochem Pharmacol. 2013 Dec 15;86(12):1699-707. (PMID: 24148278)
Antimicrob Agents Chemother. 2015 Aug;59(8):4845-55. (PMID: 26033735)
Bioorg Med Chem Lett. 2014 Jan 1;24(1):353-9. (PMID: 24287381)
Sci Rep. 2019 Dec 27;9(1):20092. (PMID: 31882782)
Antimicrob Agents Chemother. 2013 Dec;57(12):5860-9. (PMID: 24041882)
ACS Infect Dis. 2019 Aug 9;5(8):1279-1294. (PMID: 31268666)
Curr Opin Microbiol. 2017 Apr;36:85-94. (PMID: 28254403)
J Antimicrob Chemother. 2015 Nov;70(11):3070-3. (PMID: 26245639)
PLoS One. 2014 Apr 15;9(4):e93953. (PMID: 24736743)
J Am Chem Soc. 2012 Aug 1;134(30):12342-5. (PMID: 22793495)
Bioorg Chem. 2019 Oct;91:103169. (PMID: 31398602)
Cell. 2017 Nov 30;171(6):1354-1367.e20. (PMID: 29103614)
Mol Microbiol. 2009 May;72(4):895-904. (PMID: 19400776)
J Antibiot (Tokyo). 2015 Apr;68(4):253-8. (PMID: 25293977)
PLoS Pathog. 2015 May 07;11(5):e1004891. (PMID: 25951442)
Antimicrob Agents Chemother. 2017 Aug 24;61(9):. (PMID: 28630190)
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10886-91. (PMID: 11517340)
Antibiotics (Basel). 2020 Feb 07;9(2):. (PMID: 32046082)
Nat Commun. 2015 Aug 17;6:8055. (PMID: 26278781)
Elife. 2018 Feb 21;7:. (PMID: 29465397)
Sci Transl Med. 2012 Mar 21;4(126):126ra35. (PMID: 22440737)
APMIS. 2010 Jan;118(1):1-36. (PMID: 20041868)
Nat Microbiol. 2019 Aug;4(8):1368-1377. (PMID: 31086309)
Methods Enzymol. 1991;204:587-636. (PMID: 1658572)
Appl Environ Microbiol. 2013 Apr;79(7):2218-24. (PMID: 23354696)
Curr Protoc Microbiol. 2014 Feb 06;32:Unit 9C.3. (PMID: 24510849)
FEMS Microbiol Rev. 2000 Oct;24(4):531-48. (PMID: 10978550)
Eur J Med Chem. 2019 Feb 1;163:95-115. (PMID: 30503946)
Antimicrob Agents Chemother. 2013 Jan;57(1):317-25. (PMID: 23114779)
Science. 2008 Sep 19;321(5896):1673-5. (PMID: 18801997)
IUBMB Life. 2014 Aug;66(8):572-7. (PMID: 25044998)
Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11821-6. (PMID: 15289600)
Drug Resist Updat. 2011 Apr;14(2):118-24. (PMID: 21435939)
mBio. 2016 Sep 06;7(5):. (PMID: 27601570)
Opt Express. 2018 Apr 2;26(7):8049-8058. (PMID: 29715778)
J Med Chem. 2016 Aug 11;59(15):6975-98. (PMID: 26756351)
Cell Host Microbe. 2015 Nov 11;18(5):604-12. (PMID: 26567511)
Mol Microbiol. 2005 Feb;55(3):799-807. (PMID: 15661005)
Bioessays. 2017 Jan;39(1):1-11. (PMID: 28004447)
Curr Opin Microbiol. 2013 Oct;16(5):522-30. (PMID: 23932516)
Nature. 2018 Feb 22;554(7693):528-532. (PMID: 29443967)
Curr Biol. 2005 Jul 12;15(13):R514-26. (PMID: 16005287)
P T. 2015 Apr;40(4):277-83. (PMID: 25859123)
Microbiol Spectr. 2019 Mar;7(2):. (PMID: 30900543)
Medchemcomm. 2019 Mar 14;10(8):1231-1241. (PMID: 31534648)
FEMS Microbiol Rev. 2016 Jan;40(1):57-67. (PMID: 26377318)
Annu Rev Biochem. 2015;84:577-601. (PMID: 26034890)
J Bacteriol. 2005 Mar;187(5):1815-24. (PMID: 15716453)
Grant Information:
R01 AI118874 United States AI NIAID NIH HHS; R01 AI139100 United States AI NIAID NIH HHS
Contributed Indexing:
Keywords: FtsZ inhibitor; MRSA; PBP2a; anti-PBP2a antibody; antibacterial synergy; fluorescence microscopy; oxacillin; penicillin-binding proteins; protein localization; transmission electron microscopy
Substance Nomenclature:
0 (Anti-Bacterial Agents)
0 (Bacterial Proteins)
0 (Cytoskeletal Proteins)
0 (FtsZ protein, Bacteria)
0 (Penicillin-Binding Proteins)
0 (beta-Lactams)
UH95VD7V76 (Oxacillin)
Entry Date(s):
Date Created: 20210525 Date Completed: 20210826 Latest Revision: 20220123
Update Code:
20240105
PubMed Central ID:
PMC8297533
DOI:
10.1128/JB.00204-21
PMID:
34031040
Czasopismo naukowe
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen of acute clinical importance. Combination treatment with an FtsZ inhibitor potentiates the activity of penicillin binding protein (PBP)-targeting β-lactam antibiotics against MRSA. To explore the mechanism underlying this synergistic behavior, we examined the impact of treatment with the FtsZ inhibitor TXA707 on the spatial localization of the five PBP proteins expressed in MRSA. In the absence of drug treatment, PBP1, PBP2, PBP3, and PBP4 colocalize with FtsZ at the septum, contributing to new cell wall formation. In contrast, PBP2a localizes to distinct foci along the cell periphery. Upon treatment with TXA707, septum formation becomes disrupted, and FtsZ relocalizes away from midcell. PBP1 and PBP3 remain significantly colocalized with FtsZ, while PBP2, PBP4, and PBP2a localize away from FtsZ to specific sites along the periphery of the enlarged cells. We also examined the impact on PBP2a and PBP2 localization of treatment with β-lactam antibiotic oxacillin alone and in synergistic combination with TXA707. Significantly, PBP2a localizes to the septum in approximately 15% of the oxacillin-treated cells, a behavior that likely contributes to the β-lactam resistance of MRSA. Combination treatment with TXA707 causes both PBP2a and PBP2 to localize in malformed septum-like structures. Our collective results suggest that PBP2, PBP4, and PBP2a may function collaboratively in peripheral cell wall repair and maintenance in response to FtsZ inhibition by TXA707. Cotreatment with oxacillin appears to reduce the availability of PBP2a to assist in this repair, thereby rendering the MRSA cells more susceptible to the β-lactam. IMPORTANCE MRSA is a multidrug-resistant bacterial pathogen of acute clinical importance, infecting many thousands of individuals globally each year. The essential cell division protein FtsZ has been identified as an appealing target for the development of new drugs to combat MRSA infections. Through synergistic actions, FtsZ-targeting agents can sensitize MRSA to antibiotics like the β-lactams that would otherwise be ineffective. This study provides key insights into the mechanism underlying this synergistic behavior as well as MRSA resistance to β-lactam drugs. The results of this work will help guide the identification and optimization of combination drug regimens that can effectively treat MRSA infections and reduce the potential for future resistance.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies