Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer.

Tytuł:
Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer.
Autorzy:
Kocakavuk E; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.; DKFZ Division of Translational Neurooncology at the West German Cancer Center, German Cancer Consortium Partner Site, University Hospital Essen, Essen, Germany.; Department of Neurosurgery, University Hospital Essen, Essen, Germany.
Anderson KJ; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Varn FS; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Johnson KC; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Amin SB; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Sulman EP; NYU Langone Health, New York, NY, USA.
Lolkema MP; Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
Barthel FP; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .; Department of Pathology, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. .; Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ, USA. .
Verhaak RGW; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .
Źródło:
Nature genetics [Nat Genet] 2021 Jul; Vol. 53 (7), pp. 1088-1096. Date of Electronic Publication: 2021 May 27.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: New York, NY : Nature Pub. Co., c1992-
MeSH Terms:
Neoplasms/*genetics
Neoplasms/*mortality
Radiotherapy/*adverse effects
Sequence Deletion/*radiation effects
DNA Damage/radiation effects ; Humans ; Mutagenesis/radiation effects ; Neoplasm Recurrence, Local ; Neoplasms/epidemiology ; Neoplasms/radiotherapy ; Prognosis ; Radiation, Ionizing
References:
Barton, M. B. et al. Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother. Oncol. 112, 140–144 (2014). (PMID: 2483356110.1016/j.radonc.2014.03.024)
Tyldesley, S. et al. Estimating the need for radiotherapy for patients with prostate, breast, and lung cancers: verification of model estimates of need with radiotherapy utilization data from British Columbia. Int. J. Radiat. Oncol. Biol. Phys. 79, 1507–1515 (2011). (PMID: 2060533810.1016/j.ijrobp.2009.12.070)
Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017). (PMID: 28512351706260810.1038/nrm.2017.48)
Campbell, B. B. et al. Comprehensive analysis of hypermutation in human cancer. Cell 171, 1042–1056 (2017). (PMID: 29056344584939310.1016/j.cell.2017.09.048)
Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112–120 (2019). (PMID: 31748746689736810.1038/s41586-019-1775-1)
Touat, M. et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580, 517–523 (2020). (PMID: 32322066823502410.1038/s41586-020-2209-9)
Behjati, S. et al. Mutational signatures of ionizing radiation in second malignancies. Nat. Commun. 7, 12605 (2016). (PMID: 27615322502724310.1038/ncomms12605)
Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019). (PMID: 31645765687249110.1038/s41586-019-1689-y)
Consortium, G. Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro Oncol. 20, 873–884 (2018). (PMID: 10.1093/neuonc/noy020)
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005). (PMID: 1575800910.1056/NEJMoa043330)
Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 131, 803–820 (2016). (PMID: 2715793110.1007/s00401-016-1545-1)
Lutz, S. T., Jones, J. & Chow, E. Role of radiation therapy in palliative care of the patient with cancer. J. Clin. Oncol. 32, 2913–2919 (2014). (PMID: 25113773415272010.1200/JCO.2014.55.1143)
Nguyen, L., Martens, J. W. M., Van Hoeck, A. & Cuppen, E. Pan-cancer landscape of homologous recombination deficiency. Nat. Commun. 11, 5584 (2020). (PMID: 33149131764311810.1038/s41467-020-19406-4)
Pich, O. et al. The mutational footprints of cancer therapies. Nat. Genet. 51, 1732–1740 (2019). (PMID: 31740835688754410.1038/s41588-019-0525-5)
Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836 (2019). (PMID: 30982602650633610.1016/j.cell.2019.03.001)
Georgakopoulos-Soares, I., Morganella, S., Jain, N., Hemberg, M. & Nik-Zainal, S. Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis. Genome Res. 28, 1264–1271 (2018). (PMID: 30104284612062210.1101/gr.231688.117)
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 (2017). (PMID: 29056346572039510.1016/j.cell.2017.09.042)
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). (PMID: 32025018705421310.1038/s41586-020-1943-3)
Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017). (PMID: 28288110583394510.1038/nm.4292)
Touat, M. et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580, 517–523 (2020). (PMID: 32322066823502410.1038/s41586-020-2209-9)
Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016). (PMID: 27135926491086610.1038/nature17676)
Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013). (PMID: 23852170378906210.1038/ng.2702)
Lei, L. et al. APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks. Nat. Struct. Mol. Biol. 25, 45–52 (2018). (PMID: 2932327410.1038/s41594-017-0004-6)
Nowarski, R. & Kotler, M. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion. Cancer Res. 73, 3494–3498 (2013). (PMID: 23598277368688510.1158/0008-5472.CAN-13-0728)
Nowarski, R. et al. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair. Blood 120, 366–375 (2012). (PMID: 22645179339875410.1182/blood-2012-01-402123)
Volkova, N. V. et al. Mutational signatures are jointly shaped by DNA damage and repair. Nat. Commun. 11, 2169 (2020). (PMID: 32358516719545810.1038/s41467-020-15912-7)
Ceccarelli, M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164, 550–563 (2016). (PMID: 26824661475411010.1016/j.cell.2015.12.028)
Adewoye, A. B., Lindsay, S. J., Dubrova, Y. E. & Hurles, M. E. The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline. Nat. Commun. 6, 6684 (2015). (PMID: 2580952710.1038/ncomms7684)
Bakhoum, S. F. et al. Numerical chromosomal instability mediates susceptibility to radiation treatment. Nat. Commun. 6, 5990 (2015). (PMID: 2560671210.1038/ncomms6990)
Rose, Li,Y. et al. Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice. Nat. Commun. 11, 394 (2020). (PMID: 10.1038/s41467-019-14261-4)
Touil, N., Elhajouji, A., Thierens, H. & Kirsch-Volders, M. Analysis of chromosome loss and chromosome segregation in cytokinesis-blocked human lymphocytes: non-disjunction is the prevalent mistake in chromosome segregation produced by low dose exposure to ionizing radiation. Mutagenesis 15, 1–7 (2000). (PMID: 1064052410.1093/mutage/15.1.1)
Behjati, S. et al. Mutational signatures of ionizing radiation in second malignancies. Nat. Commun. 7, 12605 (2016). (PMID: 27615322502724310.1038/ncomms12605)
Davidson, P. R., Sherborne, A. L., Taylor, B., Nakamura, A. O. & Nakamura, J. L. A pooled mutational analysis identifies ionizing radiation-associated mutational signatures conserved between mouse and human malignancies. Sci. Rep. 7, 7645 (2017). (PMID: 28794481555045010.1038/s41598-017-07888-0)
Lopez, G. Y. et al. The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathol. 137, 139–150 (2019). (PMID: 3019642310.1007/s00401-018-1906-z)
Phi, J. H. et al. Genomic analysis reveals secondary glioblastoma after radiotherapy in a subset of recurrent medulloblastomas. Acta Neuropathol. 135, 939–953 (2018). (PMID: 2964439410.1007/s00401-018-1845-8)
Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019). (PMID: 31209394698252610.1038/s41588-019-0423-x)
Reiter, J. G. et al. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nat. Genet. 52, 692–700 (2020). (PMID: 32451459734361110.1038/s41588-020-0633-2)
Wiggans, A. J., Cass, G. K., Bryant, A., Lawrie, T. A., & Morrison, J. Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst. Rev. 5, CD007929 (2015).
Su, J. M. et al. A phase I trial of veliparib (ABT-888) and temozolomide in children with recurrent CNS tumors: a pediatric brain tumor consortium report. Neuro Oncol. 16, 1661–1668 (2014). (PMID: 24908656423208110.1093/neuonc/nou103)
O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623 (2017). (PMID: 2864913510.1038/nrg.2017.47)
Munster, P. et al. First-in-human phase I study of a dual mTOR kinase and DNA-PK inhibitor (CC-115) in advanced malignancy. Cancer Manag. Res. 11, 10463–10476 (2019). (PMID: 31853198691667510.2147/CMAR.S208720)
Goldberg, F. W. et al. The discovery of 7-methyl-2-[(7-methyl[1,2,4]triazolo[1,5-a]pyridin-6-yl)amino]-9-(tetrahydro-2H-pyran-4-yl)-7,9-dihydro-8H-purin-8-one (AZD7648), a potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor. J. Med. Chem. 63, 3461–3471 (2020). (PMID: 3185151810.1021/acs.jmedchem.9b01684)
Thijssen, R. et al. Dual TORK/DNA-PK inhibition blocks critical signaling pathways in chronic lymphocytic leukemia. Blood 128, 574–583 (2016). (PMID: 2723513710.1182/blood-2016-02-700328)
Timme, C. R., Rath, B. H., O’Neill, J. W., Camphausen, K. & Tofilon, P. J. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Mol. Cancer Ther. 17, 1207–1216 (2018). (PMID: 29549168632220010.1158/1535-7163.MCT-17-1267)
Li, M. et al. First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G. ACS Chem. Biol. 7, 506–517 (2012). (PMID: 22181350330649910.1021/cb200440y)
Bins, S. et al. Implementation of a multicenter biobanking collaboration for next-generation sequencing-based biomarker discovery based on fresh frozen pretreatment tumor tissue biopsies. Oncologist 22, 33–40 (2017). (PMID: 2766288410.1634/theoncologist.2016-0085)
Cer, R. Z. et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res. 41, D94–D100 (2013). (PMID: 2312537210.1093/nar/gks955)
Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 10, 33 (2018). (PMID: 29695279592231610.1186/s13073-018-0539-0)
Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019). (PMID: 31470794671737410.1186/s12864-019-6041-2)
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352)
Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014). (PMID: 24970577419782210.1186/gb-2014-15-6-r84)
Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011). (PMID: 21324876310633010.1101/gr.114876.110)
Chiang, C. et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat. Methods 12, 966–968 (2015). (PMID: 26258291458946610.1038/nmeth.3505)
Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).
Grant Information:
R01 CA190121 United States CA NCI NIH HHS; R21 NS114873 United States NS NINDS NIH HHS; P30 CA034196 United States CA NCI NIH HHS; K99 CA226387 United States CA NCI NIH HHS; R01 CA237208 United States CA NCI NIH HHS; R01 CA255705 United States CA NCI NIH HHS
Entry Date(s):
Date Created: 20210528 Date Completed: 20210830 Latest Revision: 20230202
Update Code:
20240105
PubMed Central ID:
PMC8483261
DOI:
10.1038/s41588-021-00874-3
PMID:
34045764
Czasopismo naukowe
Ionizing radiation causes DNA damage and is a mainstay for cancer treatment, but understanding of its genomic impact is limited. We analyzed mutational spectra following radiotherapy in 190 paired primary and recurrent gliomas from the Glioma Longitudinal Analysis Consortium and 3,693 post-treatment metastatic tumors from the Hartwig Medical Foundation. We identified radiotherapy-associated significant increases in the burden of small deletions (5-15 bp) and large deletions (20+ bp to chromosome-arm length). Small deletions were characterized by a larger span size, lacking breakpoint microhomology and were genomically more dispersed when compared to pre-existing deletions and deletions in non-irradiated tumors. Mutational signature analysis implicated classical non-homologous end-joining-mediated DNA damage repair and APOBEC mutagenesis following radiotherapy. A high radiation-associated deletion burden was associated with worse clinical outcomes, suggesting that effective repair of radiation-induced DNA damage is detrimental to patient survival. These results may be leveraged to predict sensitivity to radiation therapy in recurrent cancer.
(© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies