Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Microfluidic ion stripper for removal of trifluoroacetic acid from mobile phases used in HILIC-MS of intact proteins.

Tytuł:
Microfluidic ion stripper for removal of trifluoroacetic acid from mobile phases used in HILIC-MS of intact proteins.
Autorzy:
Wouters S; Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium.
Eeltink S; Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium. .
Haselberg R; Center for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.; Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
Somsen GW; Center for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.; Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
Gargano AFG; Center for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. .; Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. .
Źródło:
Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2021 Jul; Vol. 413 (17), pp. 4379-4386. Date of Electronic Publication: 2021 May 28.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Heidelberg : Springer-Verlag, 2002-
MeSH Terms:
Lab-On-A-Chip Devices*
Proteins/*analysis
Trifluoroacetic Acid/*isolation & purification
Animals ; Cattle ; Chickens ; Chromatography, Liquid ; Equipment Design ; Horses ; Hydrophobic and Hydrophilic Interactions ; Spectrometry, Mass, Electrospray Ionization
References:
Smith LM, Kelleher NL. Proteoform: a single term describing protein complexity. Nat Methods. 2013;10(3):186–7 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4114032&tool=pmcentrez&rendertype=abstract . (PMID: 10.1038/nmeth.2369)
Toby TK, Fornelli L, Kelleher NL. Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem. 2016;9(1):499–519 Available from: http://www.annualreviews.org/doi/10.1146/annurev-anchem-071015-041550 . (PMID: 10.1146/annurev-anchem-071015-041550)
Tran JC, Zamdborg L, Ahlf DR, Lee JE, Catherman AD, Durbin KR, et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature. 2011;480(7376):254–8. https://doi.org/10.1038/nature10575 . (PMID: 10.1038/nature10575220373113237778)
Atri VD, Fekete S, Beck A, Lauber M, Guillarme D, D’Atri V, et al. Hydrophilic interaction chromatography hyphenated with mass spectrometry: a powerful analytical tool for the comparison of originator and biosimilar therapeutic monoclonal antibodies at the middle-up level of analysis. Anal Chem. 2017 [cited 2017 Feb 23];89(3):2086–92. Available from: http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04726 .
Periat A, Fekete S, Cusumano A, Veuthey J-LL, Beck A, Lauber M, et al. Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. J Chromatogr A. 2016 [cited 2017 Feb 23];1448:81–92. Available from: http://www.sciencedirect.com/science/article/pii/S0021967316304964%5Cn . http://linkinghub.elsevier.com/retrieve/pii/S0021967316304964 .
Pedrali A, Tengattini S, Marrubini G, Bavaro T, Hemström P, Massolini G, et al. Characterization of intact neo-glycoproteins by hydrophilic interaction liquid chromatography. Molecules. 2014;19(7):9070–88. (PMID: 10.3390/molecules19079070)
Gargano AFG, Roca LS, Fellers RT, Bocxe M, Domínguez-Vega E, Somsen GW. Capillary HILIC-MS: a new tool for sensitive top-down proteomics. Anal Chem. 2018;90(11):6601–9. https://doi.org/10.1021/acs.analchem.8b00382 . (PMID: 10.1021/acs.analchem.8b00382297229725990932)
Gargano AFG, Schouten O, van Schaick G, Roca LS, van den Berg-Verleg JH, Haselberg R, et al. Profiling of a high mannose-type N-glycosylated lipase using hydrophilic interaction chromatography-mass spectrometry. Anal Chim Acta. 2020;1109:69–77. https://doi.org/10.1016/j.aca.2020.02.042 . (PMID: 10.1016/j.aca.2020.02.04232252907)
Garcia MC, Hogenboom ACC, Zappey H, Irth H, García MC, Hogenboom ACC, et al. Effect of the mobile phase composition on the separation and detection of intact proteins by reversed-phase liquid chromatography–electrospray mass spectrometry. J Chromatogr A. 2002;957(2):187–99. Available from: http://www.sciencedirect.com/science/article/pii/S002196730200345X .
Bobály B, Mikola V, Sipkó E, Márta Z, Fekete J. Recovery of proteins affected by mobile phase trifluoroacetic acid concentration in reversed-phase chromatography. J Chromatogr Sci. 2015;53(7):1078–83. (PMID: 10.1093/chromsci/bmu169)
Bobály B, Tóth E, Drahos L, Zsila F, Visy J, Fekete J, et al. Influence of acid-induced conformational variability on protein separation in reversed phase high performance liquid chromatography. J Chromatogr A. 2014;1325:155–62. (PMID: 10.1016/j.chroma.2013.12.022)
Apffel A, Fischer S, Goldberg G, Goodley PC, Kuhlmann FE. Enhanced sensitivity for peptide mapping with electrospray liquid chromatography-mass spectrometry in the presence of signal suppression due to trifluoroacetic acid-containing mobile phases. J Chromatogr A. 1995;712(1):177–90. (PMID: 10.1016/0021-9673(95)00175-M)
Kuhlmann FE, Apffel A, Fischer SM, Goldberg G, Goodley PC. Signal enhancement for gradient reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry analysis with trifluoroacetic and other strong acid modifiers by postcolumn addition of propionic acid and isopropanol. J Am Soc Mass Spectrom. 1995;6:1221–5. (PMID: 10.1016/1044-0305(95)00571-4)
Chan CC, Bolgar MS, Dalpathado D, Lloyd DK. Mitigation of signal suppression caused by the use of trifluoroacetic acid in liquid chromatography mobile phases during liquid chromatography/mass spectrometry analysis via post-column addition of ammonium hydroxide. Rapid Commun Mass Spectrom. 2012;26(12):1507–14. (PMID: 10.1002/rcm.6240)
Wang N-H, Lee W-L, Her G-R. Signal enhancement for peptide analysis in liquid chromatography–electrospray ionization mass spectrometry with trifluoroacetic acid containing mobile phase by postcolumn electrophoretic mobility control. Anal Chem. 2011;83(16):6163–8 Available from: http://pubs.acs.org/doi/abs/10.1021/ac2003714 . (PMID: 10.1021/ac2003714)
New A P, Wolff JC, Crabtree S, Freitas do Santos L, Okafo G, Lee J, et al. Preliminary investigation of the application of on-line membrane extraction of trifluoroacetic acid as an aid to improvement of negative ion electrospray mass spectrometry data. J Chromatogr A. 2001;913(1–2):205–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11355814.
Zhou Z, Zhang J, Xing J, Bai Y, Liao Y, Liu H. Membrane-based continuous remover of trifluoroacetic acid in mobile phase for LC-ESI-MS analysis of small molecules and proteins. J Am Soc Mass Spectrom. 2012;23(7):1289–92 Available from: https://link.springer.com/article/10.1007/s13361-012-0385-z . (PMID: 10.1007/s13361-012-0385-z)
Chen J, Liu Z, Wang F, Mao J, Zhou Y, Liu J, et al. Enhancing the performance of LC-MS for intact protein analysis by counteracting the signal suppression effects of trifluoroacetic acid during electrospray. Chem Commun. 2015;51(79):14758–60 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26295950 . (PMID: 10.1039/C5CC06072A)
Wang S, Xing T, Li N, Yan Y, He Z, Liu AP, et al. Simple approach for improved LC–MS analysis of protein biopharmaceuticals via modification of desolvation gas. Anal Chem. 2019;91:3156–62. (PMID: 10.1021/acs.analchem.8b05846)
Domínguez-Vega E, Tengattini S, Peintner C, van Angeren J, Temporini C, Haselberg R, et al. High-resolution glycoform profiling of intact therapeutic proteins by hydrophilic interaction chromatography-mass spectrometry. Talanta. 2018;184(January):375–81. https://doi.org/10.1016/j.talanta.2018.03.015 . (PMID: 10.1016/j.talanta.2018.03.01529674057)
Wouters S, Bruggink C, Agroskin Y, Pohl C, Eeltink S. Microfluidic membrane suppressor module design and evaluation for capillary ion chromatography. J Chromatogr A. 2017;1484:26–33. https://doi.org/10.1016/j.chroma.2016.12.078 . (PMID: 10.1016/j.chroma.2016.12.07828089275)
Wouters S, Wouters B, Jespers S, Desmet G, Eghbali H, Bruggink C, et al. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography. J Chromatogr A. 2014;1355:253–60. https://doi.org/10.1016/j.chroma.2014.06.025 . (PMID: 10.1016/j.chroma.2014.06.02524973803)
Davydova E, Wouters S, Deridder S, Desmet G, Eeltink S, Schoenmakers PJ. Design and evaluation of microfluidic devices for two-dimensional spatial separations. J Chromatogr A. 2016 [cited 2017 Sep 7];1434:127–35. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967316000236 .
Nshanian M, Lakshmanan R, Chen H, Loo RRO, Loo JA. Enhancing sensitivity of liquid chromatography–mass spectrometry of peptides and proteins using supercharging agents. Int J Mass Spectrom. 2018;427:157–64. https://doi.org/10.1016/j.ijms.2017.12.006 . (PMID: 10.1016/j.ijms.2017.12.00629750076)
Lomeli SH, Peng IX, Yin S, Ogorzalek Loo RR, Loo JA. New reagents for increasing ESI multiple charging of proteins and protein complexes. J Am Soc Mass Spectrom. 2010;21(1):127–31. https://doi.org/10.1016/j.jasms.2009.09.014 . (PMID: 10.1016/j.jasms.2009.09.01419854660)
Douglass KA, Venter AR. Investigating the role of adducts in protein supercharging with sulfolane. J Am Soc Mass Spectrom. 2012;23(3):489–97. (PMID: 10.1007/s13361-011-0319-1)
Grant Information:
722.015.009 NWO; G033018N Fonds Wetenschappelijk Onderzoek
Contributed Indexing:
Keywords: Intact protein analysis; LC ion-pairing; LC-MS; MS ion suppression; Microfluidic chips; TFA
Substance Nomenclature:
0 (Proteins)
E5R8Z4G708 (Trifluoroacetic Acid)
Entry Date(s):
Date Created: 20210529 Date Completed: 20210910 Latest Revision: 20210910
Update Code:
20240105
PubMed Central ID:
PMC8245364
DOI:
10.1007/s00216-021-03414-4
PMID:
34050389
Czasopismo naukowe
Trifluoroacetic acid (TFA) is commonly used as mobile phase additive to improve retention and peak shape characteristics in hydrophilic interaction liquid chromatography (HILIC) of intact proteins. However, when using electrospray ionization-mass spectrometry (ESI-MS) detection, TFA may cause ionization suppression and adduct formation, leading to reduced analyte sensitivity. To address this, we describe a membrane-based microfluidic chip with multiple parallel channels for the selective post-column removal of TFA anions from HILIC. An anion-exchange membrane was used to physically separate the column effluent from a stripper flow solution comprising acetonitrile, formic acid, and propionic acid. The exchange of ions allowed the post-column removal of TFA used during HILIC separation of model proteins. The multichannel design of the device allows the use of flow rates of 0.2 mL/min without the need for a flow splitter, using mobile phases containing 0.1% TFA (13 mM). Separation selectivity and efficiency were maintained (with minor band broadening effects) while increasing the signal intensity and peak areas by improving ionization and reducing TFA adduct formation.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies