Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cytogenetic markers using single-sequence probes reveal chromosomal locations of tandemly repetitive genes in scleractinian coral Acropora pruinosa.

Tytuł:
Cytogenetic markers using single-sequence probes reveal chromosomal locations of tandemly repetitive genes in scleractinian coral Acropora pruinosa.
Autorzy:
Vacarizas J; Kuroshio Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan. .
Taguchi T; Department of Nutrition, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Kochi, Japan.
Mezaki T; Kuroshio Biological Research Foundation, Otsuki, Kochi, Japan.
Okumura M; Sea Nature Museum Marine Jam, Kaiyo, Tokushima, Japan.
Kawakami R; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan.
Ito M; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan.
Kubota S; Kuroshio Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan.
Źródło:
Scientific reports [Sci Rep] 2021 May 31; Vol. 11 (1), pp. 11326. Date of Electronic Publication: 2021 May 31.
Typ publikacji:
Evaluation Study; Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Chromosomes*
Cytogenetic Analysis*
Molecular Probe Techniques*
Anthozoa/*genetics
Animals ; Histones/genetics ; RNA, Ribosomal, 5S/genetics
References:
Thresher, R. E. et al. Genetic control of invasive fish: technological options and its role in integrated pest management. Biol. Invasions 16, 1201–1216 (2014). (PMID: 10.1007/s10530-013-0477-0)
Gorshkov, S., Gorshkova, G., Hadani, A., Gordin, H. & Knibb, W. Chromosome set manipulations and hybridization experiments in gilthead seabream (Sparus aurata). II. Assessment of diploid and triploid hybrids between gilthead seabream and red seabream (Pagrus major). J. Appl. Ichthyol. 18, 106–112 (2002). (PMID: 10.1046/j.1439-0426.2002.00334.x)
Barton, J. A., Willis, B. L. & Hutson, K. S. Coral propagation: a review of techniques for ornamental trade and reef restoration. Rev. Aquac. 9, 238–256 (2017). (PMID: 10.1111/raq.12135)
Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004). (PMID: 1521585410.1038/nature02691)
Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003). (PMID: 1292028910.1126/science.1085046)
Flot, J.-F., Ozouf-Costaz, C., Tsuchiya, M. & van Woesik, R. Comparative coral cytogenetics. Proc. Int. Coral Reef Symp. 1, 4–8 (2006).
Kenyon, J. C. Models of reticulate evolution in the coral Genus Acropora based on chromosome numbers: parallels with plants. Evolution 51, 756 (1997). (PMID: 2856858510.2307/2411152)
Taguchi, T. et al. Identification of homogeneously staining regions by G-banding and chromosome microdissection, and FISH marker selection using human Alu sequence primers in a scleractinian coral Coelastrea aspera Verrill, 1866 (Cnidaria). Comp. Cytogenet. 10, 61–75 (2016). (PMID: 27186338485692610.3897/CompCytogen.v10i1.5699)
Taguchi, T. et al. Karyotypic mosaicism and molecular cytogenetic markers in the scleractinian coral Acropora pruinosa Brook, 1982 (Hexacorallia, Anthozoa, Cnidaria). Coral Reefs 39, 1415–1425 (2020). (PMID: 10.1007/s00338-020-01975-x)
Taguchi, T. et al. Molecular cytogenetic analysis and isolation of a 5S rRNA-related marker in the scleractinian coral Platygyra contorta Veron 1990 (Hexacorallia, Anthozoa, Cnidaria). Cytologia 82, 205–212 (2017). (PMID: 10.1508/cytologia.82.205)
Taguchi, T. et al. Molecular cytogenetic analysis of the scleractinian coral Acropora solitaryensis veron & Wallace 1984. Zoolog. Sci. 31, 89–94 (2014). (PMID: 2452131810.2108/zsj.31.89)
Lamb, J. C. et al. Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 175, 1047–1058 (2007). (PMID: 17237520184007410.1534/genetics.106.065573)
Reddy, P. C., Ubhe, S., Sirwani, N., Lohokare, R. & Galande, S. Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra. Zoology 123, 53–63 (2017). (PMID: 2872032310.1016/j.zool.2017.06.005)
Li, C. et al. Genomic organization, nucleotide sequence analysis of the core histone genes cluster in Chlamys farreri and molecular evolution assessment of the H2A and H2B. DNA Seq. J. DNA Seq. Mapp. 17, 440–451 (2006). (PMID: 10.1080/10425170600752593)
Miller, D. J. et al. Nucleotide sequence of the histone gene cluster in the coral Acropora formosa (cnidaria; scleractinia): features of histone gene structure and organization are common to diploblastic and triploblastic metazoans. J. Mol. Evol. 37, 245–253 (1993). (PMID: 790142210.1007/BF00175501)
Pratlong, M. et al. Evidence for a genetic sex determination in Cnidaria, the Mediterranean red coral (Corallium rubrum). R. Soc. Open Sci. 4, 1–9 (2017). (PMID: 10.1098/rsos.160880)
Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Sexual systems in scleractinian corals: an unusual pattern in the reef-building species Diploastrea heliopora. Coral Reefs 31, 705–713 (2012). (PMID: 10.1007/s00338-012-0881-4)
Gallagher, D. S. et al. A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae). Chromosome Res. 6, 505–514 (1998). (PMID: 988677110.1023/A:1009268917856)
Hsu, T. C., Spirito, S. E. & Pardue, M. L. Distribution of 18+28S ribosomal genes in mammalian genomes. Chromosoma 53, 25–36 (1975). (PMID: 110429010.1007/BF00329388)
Pardue, M. L. & Hsu, T. C. Locations of 18S and 28S ribosomal genes on the chromosomes of the indian muntjac. J. Cell Biol. 64, 251–254 (1975). (PMID: 110923410.1083/jcb.64.1.251)
McKee, B. D. & Karpen, G. H. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell 61, 61–72 (1990). (PMID: 215663010.1016/0092-8674(90)90215-Z)
Caburet, S. et al. Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res. 15, 1079–1085 (2005). (PMID: 16024823118222010.1101/gr.3970105)
Robicheau, B. M., Susko, E., Harrigan, A. M. & Snyder, M. Ribosomal RNA genes contribute to the formation of pseudogenes and junk DNA in the human genome. Genome Biol. Evol. 9, 380–397 (2017). (PMID: 28204512538167010.1093/gbe/evw307)
Marquez, L. M. Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol. Biol. Evol. 20, 1077–1086 (2003). (PMID: 1277752210.1093/molbev/msg122)
Shibuya, K., Noguchi, S., Nishimura, S. & Sekiya, T. Characterization of a rat tRNA gene cluster containing the genes for tRNAAsp, tRNAGly and tRNAGhi, and pseudogenes. Nucleic Acids Res. 10, 4441–4448 (1982). (PMID: 628927232081210.1093/nar/10.14.4441)
Van Der Drift, P., Chan, A., Zehetner, G., Westerveld, A. & Versteeg, R. Multiple MSP pseudogenes in a local repeat cluster on 1p36.2: an expanding genomic graveyard?. Genomics 62, 74–81 (1999). (PMID: 1058577010.1006/geno.1999.5972)
Browning, J. W. L., Rambo, T. M. E. & McKay, B. C. Comparative genomic analysis of the 3′ UTR of human MDM2 identifies multiple transposable elements, an RLP24 pseudogene and a cluster of novel repeat sequences that arose during primate evolution. Gene 741, 15 (2020). (PMID: 10.1016/j.gene.2020.144557)
Jacq, C., Miller, J. R. & Brownlee, G. G. A pseudogene structure in 5S DNA of Xenopus laevis. Cell 12, 109–120 (1977). (PMID: 56166110.1016/0092-8674(77)90189-1)
Vanin, E. F. Processed pseudogenes: characteristics and evolution. Annu. Rev. Genet. 19, 253–272 (1985). (PMID: 390994310.1146/annurev.ge.19.120185.001345)
Nishioka, Y., Leder, A. & Leder, P. Unusual α-globin-like gene that has cleanly lost both globin intervening sequences. Proc. Natl. Acad. Sci. U.S.A. 77, 2806–2809 (1980). (PMID: 693066834949310.1073/pnas.77.5.2806)
Vanin, E. F., Goldberg, G. I., Tucker, P. W. & Smithies, O. A mouse α-globin-related pseudogene lacking intervening sequences. Nature 286, 222–226 (1980). (PMID: 625004910.1038/286222a0)
Cross, I. & Rebordinos, L. 5S rDNA and U2 snRNA are linked in the genome of Crassostrea angulata and Crassostrea gigas oysters: does the (CT)n·(GA)n microsatellite stabilize this novel linkage of large tandem arrays?. Genome 48, 1116–1119 (2005). (PMID: 1639168010.1139/g05-075)
Manchado, M. et al. Molecular characterization and chromosomal mapping of the 5S rRNA gene in Solea senegalensis: a new linkage to the U1, U2, and U5 small nuclear RNA genes. Genome 49, 79–86 (2006). (PMID: 1646290410.1139/g05-068)
Pelliccia, F., Barzotti, R., Bucciarelli, E. & Rocchi, A. 5S ribosomal and U1 small nuclear RNA genes: a new linkage type in the genome of a crustacean that has three different tandemly repeated units containing 5S ribosomal DNA sequences. Genome 44, 331–335 (2001). (PMID: 10.1139/g01-01211444690)
Insua, A., Freire, R., Ríos, J. & Méndez, J. The 5S rDNA of mussels Mytilus galloprovincialis and M. edulis: Sequence variation and chromosomal location. Chromosome Res. 9, 495–505 (2001). (PMID: 10.1023/A:101163671405211592484)
Morescalchi, M. A., Stingo, V. & Capriglione, T. Cytogenetic analysis in Polypterus ornatipinnis (Actinopterygii, Cladistia, Polypteridae) and 5S rDNA. Mar. Genomics 4, 25–31 (2011). (PMID: 10.1016/j.margen.2010.12.00221429462)
Pérez-García, C., Cambeiro, J. M., Morán, P. & Pasantes, J. J. Chromosomal mapping of rDNAs, core histone genes and telomeric sequences in Perumytilus purpuratus (Bivalvia: Mytilidae). J. Exp. Mar. Biol. Ecol. 395, 199–205 (2010). (PMID: 10.1016/j.jembe.2010.09.004)
Araya-Jaime, C., Lam, N., Pinto, I. V., Méndez, M. A. & Iturra, P. Chromosomal organization of four classes of repetitive DNA sequences in killifish Orestias ascotanensis Parenti, 1984 (Cyprinodontiformes, Cyprinodontidae). Comp. Cytogenet. 11, 463–475 (2017). (PMID: 29093798564665410.3897/compcytogen.v11i3.11729)
Úbeda-Manzanaro, M. et al. Chromosomal mapping of the major and minor ribosomal genes, (GATA)n and U2 snRNA gene by double-colour FISH in species of the Batrachoididae family. Genetica 138, 787–794 (2010). (PMID: 10.1007/s10709-010-9460-120440541)
Utsunomia, R., Scacchetti, P. C., Pansonato-Alves, J. C., Oliveira, C. & Foresti, F. Comparative chromosome mapping of U2 snRNA and 5S rRNA genes in gymnotus species (Gymnotiformes, Gymnotidae): evolutionary dynamics and sex chromosome linkage in G. pantanal. Cytogen. Genome Res. 142, 286–292 (2014). (PMID: 10.1159/000362258)
Albig, W. et al. Mytilus edulis core histone genes are organized in two clusters devoid of linker histone genes. J. Mol. Evol. 56, 597–606 (2003). (PMID: 1269829610.1007/s00239-002-2428-8)
Drabent, B. et al. Mytilus edulis histone gene clusters containing only H1 genes. J. Mol. Evol. 49, 645–655 (1999). (PMID: 1055204510.1007/PL00006585)
Eirín-López, J. M., González-Tizón, A. M., Martinez, A. & Méndez, J. Molecular and evolutionary analysis of mussel histone genes (Mytilus spp.): possible evidence of an “orphon origin” for H1 histone genes. J. Mol. Evol. 55, 272–283 (2002). (PMID: 1218738110.1007/s00239-002-2325-1)
Barzotti, R., Pelliccia, F., Bucciarelli, E. & Rocchi, A. Organization, nucleotide sequence, and chromosomal mapping of a tandemly repeated unit containing the four core histone genes and a 5S rRNA gene in an isopod crustacean species. Genome 43, 341–345 (2000). (PMID: 1079182310.1139/g99-142)
Piscor, D., Centofante, L. & Parise-Maltempi, P. P. Highly similar morphologies between chromosomes bearing U2 snRNA gene clusters in the group Astyanax Baird and Girard, 1854 (Characiformes, Characidae): an evolutionary approach in species with 2n = 36, 46, 48, and 50. Zebrafish 13, 565–570 (2016). (PMID: 2733292310.1089/zeb.2016.1292)
Piscor, D. et al. Chromosomal mapping of repetitive sequences in Hyphessobrycon eques (Characiformes, Characidae): a special case of the spreading of 5S rDNA clusters in a genome. Genetica 148, 25–32 (2020). (PMID: 3199705010.1007/s10709-020-00086-3)
Cazaux, B., Catalan, J., Veyrunes, F., Douzery, E. J. P. & Britton-Davidian, J. Are ribosomal DNA clusters rearrangement hotspots? a case study in the genus Mus (Rodentia, Muridae). BMC Evolut. Biol. 11, 10 (2011). (PMID: 10.1186/1471-2148-11-124)
Eirín-López, J. M. et al. Molecular evolutionary characterization of the mussel Mytilus histone multigene family: first record of a tandemly repeated unit of five histone genes containing an H1 subtype with “Orphon” features. J. Mol. Evol. 58, 131–144 (2004). (PMID: 1504233310.1007/s00239-003-2531-5)
Zhang, L., Bao, Z., Wang, S., Huang, X. & Hu, J. Chromosome rearrangements in Pectinidae (Bivalvia: Pteriomorphia) implied based on chromosomal localization of histone H3 gene in four scallops. Genetica 130, 193–198 (2007). (PMID: 1690933210.1007/s10709-006-9006-8)
Pérez-García, C., Guerra-Varela, J., Morán, P. & Pasantes, J. J. Chromosomal mapping of rRNA genes, core histone genes and telomeric sequences in Brachidontes puniceus and Brachidontes rodriguezi (Bivalvia, Mytilidae). BMC Genet. 11, 5 (2010). (PMID: 10.1186/1471-2156-11-109)
Wallace, C. C., Done, B. J. & Muir, P. R. Revision and catalogue of worldwide staghorn corals Acropora and Isopora (scleractinia: Acroporidae) in the museum of tropical Queensland. Mem. Queensland Museum Nat. 57, 1–257 (2012).
Sumner, A. T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972). (PMID: 411792110.1016/0014-4827(72)90558-7)
Stover, N. A. & Steele, R. E. Trans-spliced leader addition to mRNAs in a cnidarian. Proc. Natl. Acad. Sci. U.S.A. 98, 5693–5698 (2001). (PMID: 113317663327510.1073/pnas.101049998)
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018). (PMID: 29722887596755310.1093/molbev/msy096)
Kirov, I. et al. DRAWID: user-friendly java software for chromosome measurements and idiogram drawing. Comp. Cytogen. 11, 747–757 (2017). (PMID: 10.3897/compcytogen.v11i4.20830)
Lucas, J. N. & Gray, J. W. Centromeric index versus DNA content flow karyotypes of human chromosomes measured by means of slit-scan flow cytometry. Cytometry 8, 273–279 (1987). (PMID: 359535110.1002/cyto.990080307)
Substance Nomenclature:
0 (Histones)
0 (RNA, Ribosomal, 5S)
Entry Date(s):
Date Created: 20210601 Date Completed: 20211119 Latest Revision: 20230202
Update Code:
20240105
PubMed Central ID:
PMC8167085
DOI:
10.1038/s41598-021-90580-1
PMID:
34059722
Czasopismo naukowe
The short and similar sized chromosomes of Acropora pose a challenge for karyotyping. Conventional methods, such as staining of heterochromatic regions, provide unclear banding patterns that hamper identification of such chromosomes. In this study, we used short single-sequence probes from tandemly repetitive 5S ribosomal RNA (rRNA) and core histone coding sequences to identify specific chromosomes of Acropora pruinosa. Both the probes produced intense signals in fluorescence in situ hybridization, which distinguished chromosome pairs. The locus of the 5S rDNA probe was on chromosome 5, whereas that of core histone probe was on chromosome 8. The sequence of the 5S rDNA probe was composed largely of U1 and U2 spliceosomal small nuclear RNA (snRNA) genes and their interspacers, flanked by short sequences of the 5S rDNA. This is the first report of a tandemly repetitive linkage of snRNA and 5S rDNA sequences in Cnidaria. Based on the constructed tentative karyogram and whole genome hybridization, the longest chromosome pair (chromosome 1) was heteromorphic. The probes also hybridized effectively with chromosomes of other Acropora species and population, revealing an additional core histone gene locus. We demonstrated the applicability of short-sequence probes as chromosomal markers with potential for use across populations and species of Acropora.
Erratum in: Sci Rep. 2021 Aug 12;11(1):16758. (PMID: 34385573)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies