Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evaluation of Mitochondria Content and Function in Live Cells by Multicolor Flow Cytometric Analysis.

Tytuł:
Evaluation of Mitochondria Content and Function in Live Cells by Multicolor Flow Cytometric Analysis.
Autorzy:
Fan HH; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
Tsai TL; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
Dzhagalov IL; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
Hsu CL; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan. .
Źródło:
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2021; Vol. 2276, pp. 203-213.
Typ publikacji:
Evaluation Study; Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
MeSH Terms:
Blood Cells/*metabolism
Flow Cytometry/*methods
Fluorescent Dyes/*metabolism
Mitochondria/*metabolism
Spleen/*metabolism
Superoxides/*metabolism
Animals ; Blood Cells/cytology ; Blood Cells/ultrastructure ; Humans ; Spleen/cytology ; Spleen/ultrastructure
References:
Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20(7):745–754. https://doi.org/10.1038/s41556-018-0124-1. (PMID: 10.1038/s41556-018-0124-1299505726541229)
Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27(1):4–25. https://doi.org/10.1111/sms.12702. (PMID: 10.1111/sms.1270227263489)
Mumcuoglu EU, Hassanpour R, Tasel SF, Perkins G, Martone ME, Gurcan MN (2012) Computerized detection and segmentation of mitochondria on electron microscope images. J Microsc 246(3):248–265. https://doi.org/10.1111/j.1365-2818.2012.03614.x. (PMID: 10.1111/j.1365-2818.2012.03614.x22506967)
Pelletier M, Billingham LK, Ramaswamy M, Siegel RM (2014) Chapter Seven—Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption. Methods Enzymol 542:125–149. https://doi.org/10.1016/B978-0-12-416618-9.00007-8. (PMID: 10.1016/B978-0-12-416618-9.00007-824862264)
Plitzko B, Loesgen S (2018) Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in culture cells for assessment of the energy metabolism. Bio-protocol 8(10):e2850. https://doi.org/10.21769/BioProtoc.2850. (PMID: 10.21769/BioProtoc.2850342859678275291)
Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 108(25):10190–10195. https://doi.org/10.1073/pnas.1107402108. (PMID: 10.1073/pnas.1107402108216465273121813)
Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M (2014) Chapter Sixteen - Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 547:309–354. https://doi.org/10.1016/B978-0-12-801415-8.00016-3. (PMID: 10.1016/B978-0-12-801415-8.00016-325416364)
Van Blerkom J (2011) Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11(5):797–813. https://doi.org/10.1016/j.mito.2010.09.012. (PMID: 10.1016/j.mito.2010.09.01220933103)
Tait SWG, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 5(9):a008706. https://doi.org/10.1101/cshperspect.a008706. (PMID: 10.1101/cshperspect.a008706240032073753705)
Agnello M, Morici G, Rinaldi AM (2008) A method for measuring mitochondrial mass and activity. Cytotechnology 56(3):145–149. https://doi.org/10.1007/s10616-008-9143-2. (PMID: 10.1007/s10616-008-9143-2190028522553627)
Poot M, Zhang YZ, Krämer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG, Singer VL, Haugland RP (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44(12):1363–1372. https://doi.org/10.1177/44.12.8985128. (PMID: 10.1177/44.12.89851288985128)
Chen LB (1988) Fluorescent Labeling of Mitochondria. Methods Cell Biol 29:103–123. https://doi.org/10.1016/S0091-679X(08)60190-9. (PMID: 10.1016/S0091-679X(08)60190-9)
Heiskanen KM, Bhat MB, Wang H-W, Ma J, Nieminen A-L (1999) Mitochondrial depolarization accompanies cytochrome C release during apoptosis in PC6 cells. J Biol Chem 274(9):5654–5658. https://doi.org/10.1074/jbc.274.9.5654. (PMID: 10.1074/jbc.274.9.565410026183)
Wiederschain GY (2011) The molecular probes handbook. A guide to fluorescent probes and labeling technologies. Biochem Mosc 76(11):1276–1276. https://doi.org/10.1134/S0006297911110101. (PMID: 10.1134/S0006297911110101)
Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu C-H, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435. https://doi.org/10.1038/nature13909. (PMID: 10.1038/nature13909253835174255242)
Chen X, Song M, Zhang B, Zhang Y (2016) Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxidative Med Cell Longev 2016:10. https://doi.org/10.1155/2016/1580967. (PMID: 10.1155/2016/1580967)
Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9(2):119. https://doi.org/10.1038/s41419-017-0135-z. (PMID: 10.1038/s41419-017-0135-z293716615833737)
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LAJ (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496(7444):238–242. https://doi.org/10.1038/nature11986. (PMID: 10.1038/nature11986235355954031686)
Zhang Y, Dai M, Yuan Z (2018) Methods for the detection of reactive oxygen species. Anal Methods 10(38):4625–4638. https://doi.org/10.1039/C8AY01339J. (PMID: 10.1039/C8AY01339J)
Zhou R, Yazdi AS, Menu P, Tschopp J (2010) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221. https://doi.org/10.1038/nature09663. (PMID: 10.1038/nature0966321124315)
Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de Leon A, Robinson KM, Mason RP, Beckman JS, Barbeito L, Radi R (2008) Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci Off J Soc Neurosci 28(16):4115–4122. https://doi.org/10.1523/JNEUROSCI.5308-07.2008. (PMID: 10.1523/JNEUROSCI.5308-07.2008)
Contributed Indexing:
Keywords: FACS; Flow cytometry; Mitochondria; Quantification; Reactive oxygen species
Substance Nomenclature:
0 (Fluorescent Dyes)
11062-77-4 (Superoxides)
Entry Date(s):
Date Created: 20210601 Date Completed: 20210708 Latest Revision: 20220922
Update Code:
20240105
DOI:
10.1007/978-1-0716-1266-8_15
PMID:
34060043
Czasopismo naukowe
To evaluate how a cell responds to the external stimuli, treatment, or alteration of the microenvironment, the quantity and quality of mitochondria are commonly used as readouts. However, it is challenging to apply mitochondrial analysis to the samples that are composed of mixed cell populations originating from tissues or when multiple cell populations are of interest, using methods such as Western blot, electron microscopy, or extracellular flux analysis.Flow cytometry is a technique allowing the detection of individual cell status and its identity simultaneously when used in combination with surface markers. Here we describe how to combine mitochondria-specific dyes or the dyes targeting the superoxide produced by mitochondria with surface marker staining to measure the mitochondrial content and activity in live cells by flow cytometry. This method can be applied to all types of cells in suspension and is particularly useful for analysis of samples composed of heterogeneous cell populations.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies