Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Deregulation of Ca 2+ -Signaling Systems in White Adipocytes, Manifested as the Loss of Rhythmic Activity, Underlies the Development of Multiple Hormonal Resistance at Obesity and Type 2 Diabetes.

Tytuł:
Deregulation of Ca -Signaling Systems in White Adipocytes, Manifested as the Loss of Rhythmic Activity, Underlies the Development of Multiple Hormonal Resistance at Obesity and Type 2 Diabetes.
Autorzy:
Turovsky EA; Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia.
Turovskaya MV; Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia.
Dynnik VV; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia.
Źródło:
International journal of molecular sciences [Int J Mol Sci] 2021 May 12; Vol. 22 (10). Date of Electronic Publication: 2021 May 12.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, [2000-
MeSH Terms:
Calcium Signaling*/drug effects
Adipocytes, White/*metabolism
Diabetes Mellitus, Experimental/*metabolism
Diabetes Mellitus, Type 2/*metabolism
Obesity/*metabolism
Adipocytes, White/cytology ; Adipocytes, White/drug effects ; Animals ; Cell Size ; Cells, Cultured ; Diabetes Mellitus, Type 2/etiology ; Diet, High-Fat/adverse effects ; Epididymis ; GTP-Binding Proteins/metabolism ; Male ; Mice ; Nitric Oxide Synthase Type III/metabolism ; Obesity/chemically induced ; Palmitoylcarnitine/pharmacology ; Periodicity ; Primary Cell Culture ; Type C Phospholipases/metabolism
References:
Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2087-91. (PMID: 8446634)
Am J Physiol Heart Circ Physiol. 2000 Oct;279(4):H1482-9. (PMID: 11009432)
J Biol Chem. 2003 Dec 12;278(50):49929-35. (PMID: 14523027)
Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H77-88. (PMID: 18456728)
J Physiol. 2012 Apr 15;590(8):1849-69. (PMID: 22331418)
J Biol Chem. 1996 Feb 16;271(7):3699-705. (PMID: 8631983)
J Biol Chem. 2009 Jan 16;284(3):1820-30. (PMID: 19017653)
Front Pharmacol. 2021 Jan 21;11:585740. (PMID: 33716721)
Cardiovasc Res. 2009 Jul 15;83(2):381-7. (PMID: 19234300)
Ann N Y Acad Sci. 1998 Sep 16;853:79-91. (PMID: 10603938)
Cardiovasc Res. 2005 Dec 1;68(3):366-75. (PMID: 16226237)
Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9895-9. (PMID: 1329108)
Biophys Chem. 2004 Jan 1;107(1):83-99. (PMID: 14871603)
J Cell Sci. 2005 Oct 1;118(Pt 19):4463-71. (PMID: 16159958)
Biochem Biophys Res Commun. 2005 Mar 11;328(2):640-6. (PMID: 15694396)
Cell Biochem Biophys. 2014 Nov;70(2):867-80. (PMID: 24777815)
Biophys Chem. 1997 May 21;66(1):25-41. (PMID: 17029867)
J Cell Biol. 1976 Apr;69(1):223-6. (PMID: 1254647)
Physiology (Bethesda). 2016 Sep;31(5):316-26. (PMID: 27488743)
Biochem Biophys Res Commun. 2012 Jan 27;417(4):1219-23. (PMID: 22227186)
Am J Physiol Heart Circ Physiol. 2006 Mar;290(3):H1172-81. (PMID: 16243917)
J Smooth Muscle Res. 2020;56(0):1-18. (PMID: 32249242)
J Clin Endocrinol Metab. 2012 May;97(5):E791-5. (PMID: 22399501)
Arch Biochem Biophys. 2016 Mar 1;593:38-49. (PMID: 26850364)
J Biol Chem. 1996 Aug 16;271(33):19817-25. (PMID: 8702690)
J Physiol. 2017 May 15;595(10):3053-3062. (PMID: 27859266)
Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H672-82. (PMID: 21666108)
J Physiol. 2004 Feb 1;554(Pt 3):721-30. (PMID: 14617679)
J Biol Chem. 2001 Jun 15;276(24):21594-600. (PMID: 11274188)
J Biol Chem. 2007 Apr 6;282(14):10660-9. (PMID: 17303569)
FASEB J. 1988 Dec;2(15):3074-82. (PMID: 2847949)
Cardiovasc Res. 2002 Mar;53(4):852-61. (PMID: 11922895)
J Biol Chem. 1989 Oct 15;264(29):17131-41. (PMID: 2793847)
Nature. 1970 Oct 3;228(5266):34-6. (PMID: 5456208)
Science. 2011 Jun 17;332(6036):1433-5. (PMID: 21680840)
EMBO J. 1994 May 1;13(9):2038-43. (PMID: 7514529)
F1000Res. 2016 Aug 19;5:. (PMID: 27630768)
Am J Physiol Gastrointest Liver Physiol. 2007 Mar;292(3):G875-86. (PMID: 17158252)
Br J Pharmacol. 1999 Sep;128(1):206-12. (PMID: 10498853)
Korean J Physiol Pharmacol. 2010 Feb;14(1):37-43. (PMID: 20221278)
Nature. 1986 Feb 13-19;319(6054):600-2. (PMID: 3945348)
Biophys J. 2000 Sep;79(3):1188-95. (PMID: 10968983)
iScience. 2020 May 22;23(5):101062. (PMID: 32353764)
Mol Cell Biochem. 2019 Jun;456(1-2):191-204. (PMID: 30756222)
J Neurosci. 2000 Mar 1;20(5):1767-79. (PMID: 10684878)
Circ Res. 2003 Dec 12;93(12):1233-40. (PMID: 14615286)
Biomed Pharmacother. 2018 Jan;97:423-428. (PMID: 29091892)
Int J Mol Sci. 2019 Jul 05;20(13):. (PMID: 31284506)
Nat Rev Endocrinol. 2018 Mar;14(3):140-162. (PMID: 29348476)
Nat Commun. 2013;4:1630. (PMID: 23535651)
J Cell Sci. 2004 May 15;117(Pt 12):2427-9. (PMID: 15159447)
PLoS One. 2013 May 16;8(5):e63483. (PMID: 23696827)
Nutrition. 2020 Feb;70:110591. (PMID: 31751930)
Int J Mol Sci. 2020 Mar 05;21(5):. (PMID: 32150819)
Proc Natl Acad Sci U S A. 1982 Nov;79(22):6917-21. (PMID: 6960354)
J Physiol. 2019 Jun;597(11):2867-2885. (PMID: 30968953)
Circ Res. 2009 May 8;104(9):1085-94. (PMID: 19342603)
World J Gastroenterol. 2010 Jul 14;16(26):3239-48. (PMID: 20614479)
Cell Rep. 2017 Jan 3;18(1):225-236. (PMID: 28052251)
Diabetes. 1981 May;30(5):435-9. (PMID: 7014311)
Nature. 1993 Sep 30;365(6445):456-9. (PMID: 7692303)
Proc Natl Acad Sci U S A. 1990 Jan;87(2):682-5. (PMID: 1689048)
Biochem J. 2001 Apr 1;355(Pt 1):87-95. (PMID: 11256952)
Circ Res. 2001 Jun 8;88(11):E68-75. (PMID: 11397791)
FASEB J. 2003 Mar;17(3):482-4. (PMID: 12551848)
FASEB J. 1996 Nov;10(13):1505-17. (PMID: 8940296)
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H2097-106. (PMID: 20935150)
J Biol Chem. 1991 Oct 15;266(29):19819-25. (PMID: 1655796)
Atherosclerosis. 2011 May;216(1):44-53. (PMID: 21316056)
Grant Information:
075-00381-21-00 The study was performed within the Government Contract 075-00381-21-00 of the Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences (ITEB RAS)
Contributed Indexing:
Keywords: Ca2+ oscillations and triggering phenomena; G proteins interplay; NO and protein kinase G; feedback control of Ca2+ signaling systems; loss of rhythmicity and general hormonal resistance to obesity; murine white adipocytes
Substance Nomenclature:
1935-18-8 (Palmitoylcarnitine)
EC 1.14.13.39 (Nitric Oxide Synthase Type III)
EC 1.14.13.39 (Nos3 protein, mouse)
EC 3.1.4.- (Type C Phospholipases)
EC 3.6.1.- (GTP-Binding Proteins)
Entry Date(s):
Date Created: 20210602 Date Completed: 20210610 Latest Revision: 20210610
Update Code:
20240104
PubMed Central ID:
PMC8150837
DOI:
10.3390/ijms22105109
PMID:
34065973
Czasopismo naukowe
Various types of cells demonstrate ubiquitous rhythmicity registered as simple and complex Ca 2+ -oscillations, spikes, waves, and triggering phenomena mediated by G-protein and tyrosine kinase coupled receptors. Phospholipase C/IP 3 -receptors (PLC/IP 3 R) and endothelial NO-synthase/Ryanodine receptors (NOS/RyR)-dependent Ca 2+ signaling systems, organized as multivariate positive feedback generators (PLC-G and NOS-G), underlie this rhythmicity. Loss of rhythmicity at obesity may indicate deregulation of these signaling systems. To issue the impact of cell size, receptors' interplay, and obesity on the regulation of PLC-G and NOS-G, we applied fluorescent microscopy, immunochemical staining, and inhibitory analysis using cultured adipocytes of epididumal white adipose tissue of mice. Acetylcholine, norepinephrine, atrial natriuretic peptide, bradykinin, cholecystokinin, angiotensin II, and insulin evoked complex [Ca 2+ ] i responses in adipocytes, implicating NOS-G or PLC-G. At low sub-threshold concentrations, acetylcholine and norepinephrine or acetylcholine and peptide hormones (in paired combinations) recruited NOS-G, based on G proteins subunits interplay and signaling amplification. Rhythmicity was cell size- dependent and disappeared in hypertrophied cells filled with lipids. Contrary to control cells, adipocytes of obese hyperglycemic and hypertensive mice, growing on glucose, did not accumulate lipids and demonstrated hormonal resistance being non responsive to any hormone applied. Preincubation of preadipocytes with palmitoyl-L-carnitine (100 nM) provided accumulation of lipids, increased expression and clustering of IP 3 R and RyR proteins, and partially restored hormonal sensitivity and rhythmicity (5-15% vs. 30-80% in control cells), while adipocytes of diabetic mice were not responsive at all. Here, we presented a detailed kinetic model of NOS-G and discussed its control. Collectively, we may suggest that universal mechanisms underlie loss of rhythmicity, Ca 2+ -signaling systems deregulation, and development of general hormonal resistance to obesity.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies