Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Corrected photochemical reflectance index (PRI) is an effective tool for detecting environmental stresses in agricultural crops under light conditions.

Tytuł:
Corrected photochemical reflectance index (PRI) is an effective tool for detecting environmental stresses in agricultural crops under light conditions.
Autorzy:
Kohzuma K; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan. .
Tamaki M; Okinawa Prefectural Agricultural Research Center, Itoman, Okinawa, 901-0336, Japan.
Hikosaka K; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
Źródło:
Journal of plant research [J Plant Res] 2021 Jul; Vol. 134 (4), pp. 683-694. Date of Electronic Publication: 2021 Jun 03.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2002- : Tokyo ; New York : Springer-Verlag Tokyo
Original Publication: Tokyo : Botanical Society of Japan, c1993-
MeSH Terms:
Chlorophyll*
Crops, Agricultural*
Photosynthesis ; Plant Leaves/metabolism ; Xanthophylls
References:
Akashi K, Yoshida K, Kuwano M et al (2011) Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. Planta 233:947–960. (PMID: 21259065)
Ballester C, Zarco-Tejada PJ, Nicolás E et al (2018) Evaluating the performance of xanthophyll, chlorophyll and structure-sensitive spectral indices to detect water stress in five fruit tree species. Precision Agric 19:178–193.
Banerjee BP, Joshi S, Thoday-Kennedy E et al (2020) High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J Exp Bot 71:4604–4615. (PMID: 321853827382386)
Buddenbaum H, Rock G, Hill J et al (2015) Measuring stress reactions of beech seedlings with PRI, fluorescence, temperatures and emissivity from VNIR and thermal field imaging spectroscopy. Eur J Remote Sens 48:263–282.
Cha-um S, Yooyongwech S, Supaibulwatana K (2012) Water-deficit tolerant classification in mutant lines of indica rice. Sci Agric 69:135–141.
Chen J, Zhang Q, Chen B et al (2020) Evaluating multi-angle photochemical reflectance index and solar-induced fluorescence for the estimation of gross primary production in maize. Remote Sens 12:2812.
Davis GA, Rutherford AW, Kramer DM (2017) Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into ΔΨ and ΔpH. Phil Trans R Soc B 372:20160381. (PMID: 288081005566881)
Demmig-Adams B, Adams WW (1992) Photoprotection and Other Responses of Plants to High Light Stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626.
Esposito S, Carputo D, Cardi T et al (2020) Applications and trends of machine learning in genomics and phenomics for next-generation breeding. Plants 9:34.
Filella I, Peñuelas J, Llorens L et al (2004) Reflectance assessment of seasonal and annual changes in biomass and CO 2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens Environ 90:308–318.
Filella I, Porcar-Castell A, Munné-Bosch S et al (2009) PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int J Remote Sens 30:4443–4455.
Fujita M, Tanabata T, Urano K et al (2018) RIPPS: a plant phenotyping system for quantitative evaluation of growth under controlled environmental stress conditions. Plant Cell Physiol 59:2030–2038. (PMID: 300109706178962)
Gamon JA, Berry JA (2012) Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles. Israel J Plant Sci 60:85–95.
Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117.
Gamon JA, Field CB, Bilger W et al (1990) Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85:1–7. (PMID: 28310948)
Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44.
Gamon JA, Filella I, Peñuelas J et al (1993) The dynamic 531-nanometer ∆ reflectance signal: a survey of twenty angiosperm species. In: Yamamoto HY, Smith CM (eds) Photosynthetic responses to the environment. American Society of Plant Physiologists, Rockville, pp 172–177.
Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501. (PMID: 28307626)
Gamon JA, Kovalchuck O, Wong CYS et al (2015) Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences 12:4149–4159.
Garbulsky MF, Peñuelas J, Gamon JA et al (2011) The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis. Remote Sens Environ 115:281–297.
Gilmore AM, Björkman O (1994) Adenine nucleotides and the xanthophyll cycle in leaves—I. Effects of CO 2 - and temperature-limited photosynthesis on adenylate energy charge and violaxanthin de-epoxidation. Planta 192:526–536.
Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32. (PMID: 24854581)
Guo J, Gao Y, Wang Q et al (2014) Effect of nitrogen stress on relationship of PRI and LUE during winter wheat growth period. Proc SPIE 9263(92631A):8.
Hernández-Clemente R, Navarro-Cerrillo RM, Suárez L et al (2011) Assessing structural effects on PRI for stress detection in conifer forests. Remote Sens Environ 115:2360–2375.
Hmimina G, Dufrêne E, Soudani K (2014) Relationship between photochemical reflectance index and leaf ecophysiological and biochemical parameters under two different water statuses: towards a rapid and efficient correction method using real-time measurements. Plant Cell Environ 37:473–487. (PMID: 23906049)
Hmimina G, Merlier E, Dufrêne E et al (2015) Deconvolution of pigment and physiologically related photochemical reflectance index variability at the canopy scale over an entire growing season. Plant Cell Environ 38:1578–1590. (PMID: 25630621)
Ihuoma SO, Madramootoo CA (2019) Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Comput Electron Agric 163:104860.
Julitta T, Corp LA, Rossini M et al (2016) Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometers tommaso. Remote Sens 8:122.
Kato MC, Hikosaka K, Hirotsu N et al (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol 44:318–325. (PMID: 12668778)
Khalil F, Naiyan X, Tayyab M et al (2018) Screening of EMS-induced drought-tolerant sugarcane mutants employing physiological, molecular and enzymatic approaches. Agronomy 8:226.
Kohzuma K (2019) Evaluation of photosynthetic behaviors by simultaneous measurements of leaf reflectance and chlorophyll fluorescence analyses. J vis Exp 150:e59838.
Kohzuma K, Hikosaka K (2018) Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Biochem Biophys Res Commun 498:52–57. (PMID: 29501490)
Kohzuma K, Cruz JA, Akashi K et al (2009) The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ 32:209–219. (PMID: 19021886)
Kohzuma K, Sato Y, Ito H et al (2017) The non-mendelian green cotyledon gene in soybean encodes a small subunit of photosystem II. Plant Physiol 173:2138–2147. (PMID: 282358905373049)
Kováˇc D, Veselovská P, Klem K (2018) Potential of photochemical reflectance index for indicating photochemistry and light use efficiency in leaves of European beech and Norway spruce trees. Remote Sens 10:1202.
Kramer DM (1999) How acidic in the lumen? Photosynth Res 60:151–163.
Kuhlgert S, Austic G, Zegarac R et al (2016) MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open photosynQ network. R Soc Open Sci 3:160592. (PMID: 278535805099005)
Liu L, Zhang Y, Jiao Q et al (2013) Assessing photosynthetic light-use efficiency using a solar-induced chlorophyll fluorescence and photochemical reflectance index. Int J Remote Sens 34:4264–4280.
Liu D, Jia Q, Li J et al (2020) Increased photosynthesis and grain yields in maize grown with less irrigation water combined with density adjustment in semiarid regions. Peer J 8:e9959. (PMID: 330831157546219)
Lobell DB, Hammer GL, McLean G et al (2013) The critical role of extreme heat for maize production in the United States. Nat Clim Chang 3:497–501.
Lobos GA, Camargo AV, Del Pozo A et al (2017) Plant phenotyping and phenomics for plant breeding. Front Plant Sci 8:2181. (PMID: 293755935770690)
Magney TS, Vierling LA, Eite JUH et al (2016) Response of high frequency Photochemical Reflectance Index (PRI) measurements to environmental conditions in wheat. Remote Sens Environ 173:84–97.
Malik W, Dechmi F (2019) DSSAT modelling for best irrigation management practices assessment under mediterranean conditions. Agric Water Manag 216:27–43.
Meroni M, Colombo R (2006) Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. Remote Sens Environ 103:438–448.
Morita R, Kusaba M, Iida S et al (2009) Molecular characterization of mutations induced by gamma irradiation in rice. Genes Gent Syst 84:361–370.
Oh D, Ryu JH, Oh S et al (2018) Optical sensing for evaluating the severity of disease caused by Cladosporium sp. in barley under warmer conditions. Plant Pathol J 34:236–240. (PMID: 298877795985649)
Ohkubo S, Tanaka Y, Yamori W et al (2020) Rice cultivar Takanari has higher photosynthetic performance under fluctuating light than Koshihikari, especially under limited nitrogen supply and elevated CO 2 . Front Plant Sci 11:1308. (PMID: 329831987490297)
Peng Y, Nguy-Robertson A, Arkebauer T et al (2017) Assessment of canopy chlorophyll content retrieval in maize and soybean: implications of hysteresis on the development of generic algorithms. Remote Sens 9:226.
Peñuelas J, Gamon JA, Fredeen AL et al (1994) Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens Environ 48:135–146.
Peñuelas J, Filella I, Gamon JA (1995) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131:291–296.
Peñuelas J, Garbulsky MF, Iolanda I (2011) Photochemical reflectance index (PRI) and remote sensing of plant CO 2 uptake. New Phytol 191:596–599. (PMID: 21627667)
Pinto F, Damm A, Schickling A et al (2016) Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ 39:1500–1512. (PMID: 26763162)
Porcar-Castell A, Garcia-Plazaola JI, Nichol CJ et al (2012) Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency. Oecologia 170:313–323. (PMID: 22481306)
Rahaman MM, Chen D, Gillani Z et al (2015) Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci 6:619. (PMID: 263220604530591)
Räsch AR, Muller O, Pieruschka R et al (2014) Field observations with laser-induced fluorescence transient (LIFT) method in barley and sugar beet. Agriculture 4:159–169.
Ripullone F, Rivelli AR, Baraldi R et al (2011) Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses. Funct Plant Biol 38:177–186. (PMID: 32480874)
Rossini M, Nedbal L, Guanter L et al (2015) Red and far-red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophys Res Lett 42:1632–1639.
Roy PC, Guber A, Abouali M et al (2019) Crop yield simulation optimization using precision irrigation and subsurface water retention technology. Environ Model Softw 119:433–444.
Sarlikioti V, Driever SM, Marcelis LFM (2010) Photochemical reflectance index as a mean of monitoring early water stress. Ann Appl Biol 157:81–89.
Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354.
Sishodia P, Ray RL, Singh SK (2020) Applications of remote sensing in precision agriculture: a review. Remote Sens 12:3136.
Soudani K (2014) Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests. Remote Sens Environ 144:73–84.
Stylinski C, Gamon J, Oechel W (2002) Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131:366–374. (PMID: 28547708)
Suárez L, Zarco-Tejada PJ, Berni JAJ et al (2009) Modelling PRI for water stress detection using radiative transfer models. Remote Sens Environ 113:730–744.
Suárez L, Zarco-Tejada PJ, González-Dugo V et al (2010) Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery. Remote Sens Environ 114:286–298.
Takai T, Adachi S, Taguchi-Shiobara F et al (2013) A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep 3:2149. (PMID: 239859933756344)
Thayer SS, Björkman O (1990) Leaf Xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343. (PMID: 24419657)
Tietz S, Hall CC, Cruz AC et al (2017) NPQ (T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant Cell Environ 40:1243–1255. (PMID: 28699261)
Tito R, Vasconcelos HL, Feeley KJ (2018) Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Global Change Biol 24:e592–e602.
Toda Y, Okura F (2019) How convolutional neural networks diagnose plant disease. Plant Phenomics 2019:9237136. (PMID: 333135407706313)
Wong CYS, Gamon JA (2015) The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers. New Phytol 206:196–208. (PMID: 25641209)
Wong CYS, D’Odorico P, Bhathena Y et al (2019) Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees. Remote Sens Environ 233:111407.
Yang W, Guo Z, Huang C et al (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087. (PMID: 25295980)
Yang JC, Magney TS, Yan D et al (2020) The photochemical reflectance index (PRI) captures the ecohydrologic sensitivity of a semiarid mixed conifer forest. J Geophys Res Biogeosci 125:e2019JG005624.
Yudina L, Sukhova E, Ekaterina Gromova E et al (2020) A light-induced decrease in the photochemical reflectance index (PRI) can be used to estimate the energy-dependent component of non-photochemical quenching under heat stress and soil drought in pea, wheat, and pumpkin. Photosynth Res 146:175–187. (PMID: 32043219)
Zhang C, Filella I, Garbulsky MF et al (2016) Affecting factors and recent improvements of the photochemical reflectance index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation-use efficiencies. Remote Sens 8:677.
Zhou J, Zeng L, Liu J et al (2015) Manipulation of the xanthophyll cycle increases plant susceptibility to Sclerotinia sclerotiorum. PLoS Pathog 11:e1004878. (PMID: 259931284439079)
Grant Information:
18K05592 Japan Society for the Promotion of Science; 18J40098 Japan Society for the Promotion of Science; 18H03350 Japan Society for the Promotion of Science; 17H03727 Japan Society for the Promotion of Science; 25660113 Japan Society for the Promotion of Science; 2-1903 Environmental Restoration and Conservation Agency
Contributed Indexing:
Keywords: Environmental stress; Leaf reflectance; Photochemical reflectance index; Photosynthesis; Xanthophyll cycle
Substance Nomenclature:
0 (Xanthophylls)
1406-65-1 (Chlorophyll)
Entry Date(s):
Date Created: 20210603 Date Completed: 20210702 Latest Revision: 20210702
Update Code:
20240104
DOI:
10.1007/s10265-021-01316-1
PMID:
34081252
Czasopismo naukowe
High-throughput detection of plant environmental stresses is required for minimizing the reduction in crop yield. Environmental stresses in plants have primarily been validated by the measurements of photosynthesis with gas exchange and chlorophyll fluorescence, which involve complicated procedures. Remote sensing technologies that monitor leaf reflectance in intact plants enable real-time visualization of plant responses to environmental fluctuations. The photochemical reflectance index (PRI), one of the vegetation indices of spectral leaf reflectance, is related to changes in xanthophyll pigment composition. Xanthophyll dynamics are strongly correlated with plant stress because they contribute to the thermal dissipation of excess energy. However, an accurate assessment of plant stress based on PRI requires correction by baseline PRI (PRI o ) in the dark, which is difficult to obtain in the field. In this study, we propose a method to correct the PRI using NPQ T , which can be measured under light. By this method, we evaluated responses of excess light energy stress under drought in wild watermelon (Citrullus lanatus L.), a xerophyte. Demonstration on the farm, the stress behaviors were observed in maize (Zea mays L.). Furthermore, the stress status of plants and their recovery following re-watering were captured as visual information. These results suggest that the PRI is an excellent indicator of environmental stress and recovery in plants and could be used as a high-throughput stress detection tool in agriculture.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies