Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Diabetes induces macrophage dysfunction through cytoplasmic dsDNA/AIM2 associated pyroptosis.

Tytuł:
Diabetes induces macrophage dysfunction through cytoplasmic dsDNA/AIM2 associated pyroptosis.
Autorzy:
Nie L; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Zhao P; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Yue Z; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Zhang P; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Ji N; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Chen Q; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.; Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Chengdu, China.
Wang Q; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.; Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Chengdu, China.
Źródło:
Journal of leukocyte biology [J Leukoc Biol] 2021 Sep; Vol. 110 (3), pp. 497-510. Date of Electronic Publication: 2021 Jun 04.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2023- : Oxford : Oxford University Press
Original Publication: New York : Alan R. Liss, c1984-
MeSH Terms:
Pyroptosis*/drug effects
Cytoplasm/*metabolism
DNA/*metabolism
DNA-Binding Proteins/*metabolism
Diabetes Mellitus, Experimental/*pathology
Macrophages/*pathology
Aging/pathology ; Animals ; Antigen Presentation/drug effects ; Chemotaxis/drug effects ; Cytokines/metabolism ; Glucose/toxicity ; Hyperglycemia/complications ; Inflammation Mediators/metabolism ; Macrophages/drug effects ; Metformin/pharmacology ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Periodontium/pathology ; Phagocytosis/drug effects ; RAW 264.7 Cells
References:
Karbalaeifar R, Kazempour-Ardebili S, Amiri P, Ghannadi S, Tahmasebinejad Z, Amouzegar A. Evaluating the effect of knowledge, attitude and practice on self-management in patients with type 2 diabetes. Acta Diabetol. 2016;53:1015-1023.
Rines AK, Sharabi K, Tavares CD, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov. 2016;15:786-804.
Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62:3-16.
Su T, Xiao Y, Xiao Y, Guo Q, Li C, Huang Y, et al. Bone marrow mesenchymal stem cells-derived exosomal MiR-29b-3p regulates aging-associated insulin resistance. ACS Nano. 2019;13:2450-2462.
Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes. 2015;64:2289-2298.
Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol. 2018;40:17-35.
Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:412-420.
Nacarelli T, Lau L, Fukumoto T, et al. NAD(+) metabolism governs the proinflammatory senescence-associated secretome. Nat Cell Biol. 2019;21:397-407.
Takahashi A, Loo TM, Okada R, et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat Commun. 2018;9:1249.
Meyers AK, Zhu X. The NLRP3 inflammasome: metabolic regulation and contribution to inflammaging. Cells. 2020;9.
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42:245-254.
Hu J, Dong Y, Ding L, et al. Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment. Signal Transduct Target Ther. 2019;4:28.
Zeng C, Wang R, Tan H. Role of pyroptosis in cardiovascular diseases and its therapeutic implications. Int J Biol Sci. 2019;15:1345-1357.
Prattichizzo F, De Nigris V, Mancuso E, et al. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol. 2018;15:170-181.
Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity. 2018;48:35-44.e6.
Wang K, Sun Q, Zhong X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell. 2020;180:941-955.e20.
Mao XY, Zhou HH, Jin WL. Redox-related neuronal death and crosstalk as drug targets: focus on epilepsy. Front Neurosci. 2019;13:512.
Zhu S, Ding S, Wang P, et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature. 2017;546:667-670.
Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol. 2011;7:738-748.
Dutzan N, Abusleme L, Bridgeman H, et al. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity. 2017;46:133-147.
Belibasakis GN, Maula T, Bao K, et al. Virulence and pathogenicity properties of Aggregatibacter actinomycetemcomitans. Pathogens. 2019;8.
Luan X, Zhou X, Naqvi A, et al. MicroRNAs and immunity in periodontal health and disease. Int J Oral Sci. 2018;10:24.
Olivieri F, Prattichizzo F, Grillari J, Balistreri CR. Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm. 2018;2018:9076485.
Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61-75.
Corrales P, Vivas Y, Izquierdo-Lahuerta A, et al. Long-term caloric restriction ameliorates deleterious effects of aging on white and brown adipose tissue plasticity. Aging Cell. 2019;18:e12948.
Zhang P, Wang Q, Nie L, et al. Hyperglycemia-induced inflamm-aging accelerates gingival senescence via NLRC4 phosphorylation. J Biol Chem. 2019;294:18807-18819.
Cheng Y, Tang XY, Li YX, et al. Depression-induced neuropeptide Y secretion promotes prostate cancer growth by recruiting myeloid cells. Clin Cancer Res. 2019;25:2621-2632.
Roodveldt C, Christodoulou J, Dobson CM. Immunological features of alpha-synuclein in Parkinson's disease. J Cell Mol Med. 2008;12:1820-1829.
Hoss F, Mueller JL, Rojas Ringeling F, et al. Alternative splicing regulates stochastic NLRP3 activity. Nat Commun. 2019;10:3238.
Dror E, Dalmas E, Meier DT, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18:283-292.
Shimobayashi M, Albert V, Woelnerhanssen B, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018;128:1538-1550.
Kim IS, Choi W, Son J, et al. Screening and genetic network analysis of genes involved in freezing and thawing resistance in DaMDHAR-expressing Saccharomyces cerevisiae using gene expression profiling. Genes (Basel). 2021:12.
Wang SC, Lin CC, Tzeng NS, Tung CS, Liu YP. Effects of oxytocin on prosocial behavior and the associated profiles of oxytocinergic and corticotropin-releasing hormone receptors in a rodent model of posttraumatic stress disorder. J Biomed Sci. 2019;26:26.
Oh KS, Patel H, Gottschalk RA, et al. Anti-inflammatory chromatinscape suggests alternative mechanisms of glucocorticoid receptor action. Immunity. 2017;47:298-309.e5.
Vasamsetti SB, Coppin E, Zhang X, et al. Apoptosis of hematopoietic progenitor-derived adipose tissue-resident macrophages contributes to insulin resistance after myocardial infarction. Sci Transl Med. 2020;12.
Pryor R, Norvaisas P, Marinos G, et al. Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell. 2019;178:1299-1312.e29.
Pernicova I, Kelly S, Ajodha S, et al. Metformin to reduce metabolic complications and inflammation in patients on systemic glucocorticoid therapy: a randomised, double-blind, placebo-controlled, proof-of-concept, phase 2 trial. Lancet Diabetes Endocrinol. 2020;8:278-291.
An JY, Kerns KA, Ouellette A, et al. Rapamycin rejuvenates oral health in aging mice. Elife. 2020;9.
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20:953-966.
Gallagher L, Cregan S, Biniecka M, et al. Insulin-resistant pathways are associated with disease activity in rheumatoid arthritis and are subject to disease modification through metabolic reprogramming: a potential novel therapeutic approach. Arthritis Rheumatol. 2020;72:896-902.
Bharath LP, Agrawal M, McCambridge G, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32:44-55.e6.
Chen K, Dai H, Yuan J, et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 2018;9:105.
Altun E, Yazici H, Arslan E, Tulaci KG, Erken HA. The impact of type II diabetes on tongue dysplasia and p16-related aging process: an experimental study. Anal Cell Pathol (Amst). 2019;2019:3563215.
Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505-522.
Tang X, Jiang S, Zhang J, Zhou S, Zheng Y. Sex differences in progression of diabetic cardiomyopathy in OVE26 type 1 diabetic mice. Oxid Med Cell Longev. 2020;2020:6961348.
Gurău F, Baldoni S, Prattichizzo F, et al. Anti-senescence compounds: a potential nutraceutical approach to healthy aging. Ageing Res Rev. 2018;46:14-31.
Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23:1072-1079.
Heil M, Brockmeyer NH. Self-DNA sensing fuels HIV-1-associated inflammation. Trends Mol Med. 2019;25:941-954.
Contributed Indexing:
Keywords: diabetes mellitus; macrophage; metformin; pyroptosis
Substance Nomenclature:
0 (Aim2 protein, mouse)
0 (Cytokines)
0 (DNA-Binding Proteins)
0 (Inflammation Mediators)
9007-49-2 (DNA)
9100L32L2N (Metformin)
IY9XDZ35W2 (Glucose)
Entry Date(s):
Date Created: 20210604 Date Completed: 20210910 Latest Revision: 20210910
Update Code:
20240105
DOI:
10.1002/JLB.3MA0321-745R
PMID:
34085308
Czasopismo naukowe
Diabetes is emerging as a severe global health problem that threatens health and increases socioeconomic burden. Periodontal impairment is one of its well-recognized complications. The destruction of the periodontal defense barrier makes it easier for periodontal pathogens to invade in, triggering a greater inflammatory response, and causing secondary impairment. Macrophages are the major immune cells in periodontium, forming the frontier line of local innate immune barrier. Here, we explored the periodontal impairments and functional changes of macrophages under the diabetic and aging conditions. Besides, we further explored the molecular mechanism of how hyperglycemia and aging contribute to this pathogenesis. To test this, we used young and aged mice to build diabetic mice, and metformin treatment was applied to a group of them. We demonstrated that under hyperglycemia conditions, macrophage functions, such as inflammatory cytokines secretion, phagocytosis, chemotaxis, and immune response, were disturbed. Simultaneously, this condition elevated the local senescent cell burden and induced secretion of senescence-associated secretory phenotype. Meanwhile, we found that expressions of Gasdermin D (GSDMD) and caspase-1 were up-regulated in diabetic conditions, suggesting that the local senescent burden and systemic proinflammatory state during diabetes were accompanied by the initiation of pyroptosis. Furthermore, we found that the changes in aged condition were similar to those in diabetes, suggesting a hyperglycemia-induced pre-aging state. In addition, we show that metformin treatment alleviated and remarkably reversed these functional abnormalities. Our data demonstrated that diabetes initiated macrophage pyroptosis, which further triggered macrophage function impairments and gingival destructions. This pathogenesis could be reversed by metformin.
(©2021 Society for Leukocyte Biology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies