Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila .

Tytuł:
Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila .
Autorzy:
Hückesfeld S; Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany.
Schlegel P; Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
Miroschnikow A; Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany.
Schoofs A; Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany.
Zinke I; Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany.
Haubrich AN; Life & Brain, Institute for Experimental Epileptology and Cognition Research, University of Bonn Medical Center Germany, Bonn, Germany.
Schneider-Mizell CM; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
Truman JW; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
Fetter RD; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
Cardona A; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom.; Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom.
Pankratz MJ; Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany.
Źródło:
ELife [Elife] 2021 Jun 04; Vol. 10. Date of Electronic Publication: 2021 Jun 04.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
MeSH Terms:
Connectome*
Drosophila melanogaster/*ultrastructure
Interneurons/*ultrastructure
Neurosecretory Systems/*ultrastructure
Sensory Receptor Cells/*ultrastructure
Synapses/*ultrastructure
Animals ; Animals, Genetically Modified ; Carbon Dioxide/metabolism ; Drosophila Proteins/genetics ; Drosophila Proteins/metabolism ; Drosophila melanogaster/genetics ; Drosophila melanogaster/metabolism ; Insect Hormones/genetics ; Insect Hormones/metabolism ; Interneurons/metabolism ; Microscopy, Electron, Transmission ; Neuropeptides/genetics ; Neuropeptides/metabolism ; Neurosecretory Systems/metabolism ; Sensory Receptor Cells/metabolism ; Synapses/metabolism
References:
J Neurosci. 2018 Feb 21;38(8):2081-2093. (PMID: 29367405)
Elife. 2016 Nov 15;5:. (PMID: 27845623)
J Comp Neurol. 2001 Mar 19;431(4):481-91. (PMID: 11223816)
Development. 2015 Dec 15;142(24):4279-87. (PMID: 26395475)
Nat Biotechnol. 2018 Jun;36(5):411-420. (PMID: 29608179)
J Exp Biol. 2006 Jul;209(Pt 14):2739-48. (PMID: 16809465)
Nature. 2004 Sep 16;431(7006):316-20. (PMID: 15372035)
J Endocrinol. 2006 Sep;190(3):555-70. (PMID: 17003257)
Cell Rep. 2012 Oct 25;2(4):991-1001. (PMID: 23063364)
J Neurogenet. 2020 Mar;34(1):156-161. (PMID: 31950861)
Int J Emerg Med. 2017 Dec;10(1):14. (PMID: 28378268)
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2967-76. (PMID: 25002478)
PLoS Biol. 2014 Jun 24;12(6):e1001893. (PMID: 24960360)
Elife. 2018 Dec 11;7:. (PMID: 30526854)
Curr Biol. 2019 Dec 2;29(23):R1252-R1268. (PMID: 31794762)
Metabolism. 2018 Sep;86:3-17. (PMID: 29223677)
Elife. 2019 Nov 20;8:. (PMID: 31746739)
Peptides. 2016 Jun;80:96-107. (PMID: 26896569)
Curr Opin Neurobiol. 2020 Dec;65:129-137. (PMID: 33242722)
Nature. 2017 Aug 9;548(7666):175-182. (PMID: 28796202)
Cell Tissue Res. 2020 Nov;382(2):233-266. (PMID: 32827072)
Front Cell Neurosci. 2018 Mar 23;12:83. (PMID: 29651236)
J Endocrinol. 2015 Aug;226(2):T101-22. (PMID: 26101377)
Curr Biol. 2020 Jul 20;30(14):R831-R840. (PMID: 32693083)
PLoS One. 2008 Mar 26;3(3):e1896. (PMID: 18365028)
Neuron. 2008 Jul 10;59(1):110-24. (PMID: 18614033)
Eur J Endocrinol. 2014 Nov;171(5):R197-208. (PMID: 25005935)
J Insect Physiol. 2014 Oct;69:118-25. (PMID: 24907674)
Nature. 2019 Oct;574(7779):559-564. (PMID: 31645735)
Int Rev Cytol. 1996;167:37-89. (PMID: 8768492)
PLoS Genet. 2018 Aug 23;14(8):e1007618. (PMID: 30138334)
Open Biol. 2016 Nov;6(11):. (PMID: 27810969)
Prog Brain Res. 2000;126:117-32. (PMID: 11105644)
Nat Commun. 2018 Oct 25;9(1):4440. (PMID: 30361563)
Curr Biol. 2020 Jun 8;30(11):2156-2165.e5. (PMID: 32386525)
Elife. 2016 May 13;5:. (PMID: 27177418)
J Neurosci. 2011 Oct 26;31(43):15300-9. (PMID: 22031876)
Neuron. 2016 Jun 15;90(6):1272-1285. (PMID: 27263969)
Cell Tissue Res. 2010 Feb;339(2):321-36. (PMID: 19941006)
J Endocrinol Invest. 2004;27(6 Suppl):35-47. (PMID: 15481802)
Cell Res. 2018 Oct;28(10):1013-1025. (PMID: 30209352)
Netw Neurosci. 2020 Nov 01;4(4):1030-1054. (PMID: 33195947)
Cell. 2012 Feb 3;148(3):583-95. (PMID: 22304923)
Nature. 2015 Apr 30;520(7549):633-9. (PMID: 25896325)
Elife. 2021 Nov 10;10:. (PMID: 34755599)
Annu Rev Physiol. 2005;67:259-84. (PMID: 15709959)
PLoS One. 2014 Jan 28;9(1):e87062. (PMID: 24489834)
Dev Biol. 2007 Feb 1;302(1):309-23. (PMID: 17070515)
PLoS One. 2010 Jul 08;5(7):e11480. (PMID: 20628603)
Metabolism. 1956 Sep;5(5):525-30. (PMID: 13358567)
Insect Biochem Mol Biol. 2009 Nov;39(11):755-62. (PMID: 19815069)
Genetics. 2014 Apr;196(4):961-71. (PMID: 24478335)
J Comp Physiol A. 1991 Jun;168(6):697-707. (PMID: 1920164)
Diabetes. 2003 Mar;52(3):605-13. (PMID: 12606499)
Cell Tissue Res. 1992 Sep;269(3):431-8. (PMID: 1358452)
Front Endocrinol (Lausanne). 2013 Feb 20;4:12. (PMID: 23431022)
Cell Rep. 2015 Mar 3;10(8):1410-21. (PMID: 25732830)
Science. 2015 Feb 13;347(6223):755-60. (PMID: 25678659)
Dev Cell. 2007 Dec;13(6):857-71. (PMID: 18061567)
Annu Rev Entomol. 2013;58:181-204. (PMID: 22994547)
Cell. 2019 Jun 13;177(7):1888-1902.e21. (PMID: 31178118)
Mech Dev. 2007 Jul;124(6):427-40. (PMID: 17442544)
J Exp Biol. 1999 Nov;202(Pt 21):3037-48. (PMID: 10518485)
Neuron. 2015 Jul 1;87(1):139-51. (PMID: 26074004)
Curr Opin Neurobiol. 2019 Feb;54:146-154. (PMID: 30368037)
Prog Neurobiol. 2010 Sep;92(1):42-104. (PMID: 20447440)
Curr Opin Insect Sci. 2017 Dec;24:96-105. (PMID: 29208230)
Science. 1986 Feb 7;231(4738):607-9. (PMID: 3003907)
Fly (Austin). 2014;8(1):19-25. (PMID: 24406333)
Nat Methods. 2011 Mar;8(3):231-7. (PMID: 21473015)
Prog Neurobiol. 2019 Aug;179:101607. (PMID: 30905728)
Stress. 2002 Jun;5(2):83-100. (PMID: 12186687)
Nat Commun. 2016 Sep 13;7:12796. (PMID: 27619503)
Grant Information:
United Kingdom WT_ Wellcome Trust; MC_UP_1201/21 United Kingdom MRC_ Medical Research Council; United States HHMI Howard Hughes Medical Institute; 205038/Z/16/Z United Kingdom WT_ Wellcome Trust
Contributed Indexing:
Keywords: D. melanogaster; carbon dioxide; connectome; interneuron; neuroendocrine system; neuropeptides; neuroscience; sensory synapses
Substance Nomenclature:
0 (Crz protein, Drosophila)
0 (Dh44 protein, Drosophila)
0 (Drosophila Proteins)
0 (Insect Hormones)
0 (Neuropeptides)
142M471B3J (Carbon Dioxide)
Entry Date(s):
Date Created: 20210604 Date Completed: 20211019 Latest Revision: 20240211
Update Code:
20240211
PubMed Central ID:
PMC8177888
DOI:
10.7554/eLife.65745
PMID:
34085637
Czasopismo naukowe
Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the Drosophila larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide-responsive network that acts on a specific set of neurosecretory cells and that includes those expressing corazonin (Crz) and diuretic hormone 44 (Dh44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs.
Competing Interests: SH, PS, AM, AS, IZ, AH, CS, JT, RF, AC, MP No competing interests declared
(© 2021, Hückesfeld et al.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies