Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Morphology of the digestive system in carnivorous freshwater dourado Salminus brasiliensis.

Tytuł:
Morphology of the digestive system in carnivorous freshwater dourado Salminus brasiliensis.
Autorzy:
Alves APC; Departamento de Zootecnia, Universidade Federal de Lavras, UFLA, Lavras, Brazil.
Pereira RT; Departamento de Zootecnia, Universidade Federal de Lavras, UFLA, Lavras, Brazil.
Rosa PV; Departamento de Zootecnia, Universidade Federal de Lavras, UFLA, Lavras, Brazil.
Źródło:
Journal of fish biology [J Fish Biol] 2021 Oct; Vol. 99 (4), pp. 1222-1235. Date of Electronic Publication: 2021 Jun 22.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2003- : Oxford, UK : Blackwell Publishing
Original Publication: London, New York, Published for the Fisheries Society of the British Isles by Academic Press.
MeSH Terms:
Gastrointestinal Tract*
Stomach*
Animals ; Esophagus ; Fresh Water ; Intestines
References:
Abd-Elhafeez, H. H., Abdo, W., Kamal, B. M., & Soliman, S. A. (2020). Fish telocytes and their relation to rodlet cells in ruby-red-fin shark (rainbow shark) Epalzeorhynchos frenatum (Teleostei: Cyprinidae). Scientific Reports, 10(1), 1-18. https://doi.org/10.1038/s41598-020-75677-3.
Akiyoshi, H., & Inoue, A. (2004). Comparative histological study of teleost livers in relation to phylogeny. Zoological Science, 21(8), 841-850. https://doi.org/10.2108/zsj.21.841.
Albrecht, M. P., Ferreira, M. F. N., & Caramaschi, E. P. (2001). Anatomical features and histology of the digestive tract of two related neotropical omnivorous fishes (Characiformes; Anostomidae). Journal of Fish Biology, 58(2), 419-430. https://doi.org/10.1006/jfbi.2000.1462.
Alonso, F., Mirande, J. M., & Pandolfi, M. (2015). Gross anatomy and histology of the alimentary system of characidae (Teleostei: Ostariophysi: Characiformes) and potential phylogenetic information. Neotropical Ichthyology, 13(2), 273-286. https://doi.org/10.1590/1982-0224-20140137.
Angelescu, V., & Gneri, F. (1949). Adaptaciones del aparato digestivo al régimen alimenticio en algunos peces del Río Uruguay y del Río de la Plata: I. tipo omnívoro e iliófago en representantes de las familias “Loricariidae” y “Anostomidae”. 1, 6th Buenos Aires, Argentina: Casa Ed." Coni.
Bancroft, J. D., & Gamble, M. (Eds.). (2008). Theory and practice of histological techniques. 6th, Philadelphia, PA: Churchill Livingstone Elsevier.
Bermúdez, R., Vigliano, F., Quiroga, M. I., Nieto, J. M., Bosi, G., & Domeneghini, C. (2007). Immunohistochemical study on the neuroendocrine system of the digestive tract of turbot, Scophthalmus maximus (L.), infected by Enteromyxum scophthalmi (Myxozoa). Fish and Shellfish Immunology, 22(3), 252-263. https://doi.org/10.1016/j.fsi.2006.05.006.
Bertolucci, B., Vicentini, C. A., Vicentini, I. B. F., & Bombonato, M. T. S. (2008). Light microscopy and ultrastructure of the liver of Astyanax altiparanae Garutti and Britski, 2000 (Teleostei, Characidae). Acta Scientiarum Biological Sciences, 30(1), 73-76. https://doi.org/10.1002/cne.1185.
Bosi, G., DePasquale, J. A., Manera, M., Castaldelli, G., Giari, L., & Sayyaf Dezfuli, B. (2018). Histochemical and immunohistochemical characterization of rodlet cells in the intestine of two teleosts, Anguilla anguilla and Cyprinus carpio. Journal of Fish Diseases, 41(3), 475-485. https://doi.org/10.1111/jfd.12751.
Boudriot, F., & Reutter, K. (2001). Ultrastructure of the taste buds in the blind cave fish Astyanax jordani (“Anoptichthys”) and the sighted river fish Astyanax mexicanus (Teleostei, Characidae). Journal of Comparative Neurology, 434(4), 428-444.
Buddington, R. K., Krogdahl, A., & Bakke-McKellep, A. M. (1997). The intestines of carnivorous fish: Structure and functions and the relations with diet. Acta Physiologica Scandinavica, Supplement, 161, 67-80.
Cao, X. J., Wang, W. M., & Song, F. (2011). Anatomical and histological characteristics of the intestine of the Topmouth Culter (Culter alburnus). Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 40(4), 292-298. https://doi.org/10.1111/j.1439-0264.2011.01069.x.
Ceccotti, C., Giaroni, C., Bistoletti, M., Viola, M., Crema, F., & Terova, G. (2018). Neurochemical characterization of myenteric neurons in the juvenile gilthead sea bream (Sparus aurata) intestine. PLoS One, 13(8), e0201760. https://doi.org/10.1371/journal.pone.0201760.
Della Flora, M. A., Maschke, F., Ferreira, C. C., & de Araújo Pedron, F. (2010). Biologia e cultivo do dourado (Salminus brasiliensis). Acta Veterinaria Brasilica, 4(1), 7-14.
Desser, S. S., & Lester, R. (1975). An ultrastructural study of the enigmatic “rodlet cells” in the white sucker, Catostomus commersoni (Lacépède) (Pisces: Catostomidae). Canadian Journal of Zoology, 53(11), 1483-1494. https://doi.org/10.1139/z75-182.
Devitsina, G. V., & Golovkina, T. V. (2018). Structural organization of the taste apparatus in characins (Characidae, Teleostei). Journal of Ichthyology, 58(1), 59-72. https://doi.org/10.1134/S0032945218010046.
Dezfuli, B. S., Capuano, S., Simoni, E., Previati, M., & Giari, L. (2007). Rodlet cells and the sensory systems in zebrafish (Danio rerio). Anatomical Record, 290(4), 367-374. https://doi.org/10.1002/ar.20507.
Faccioli, C. K., Chedid, R. A., Amaral, A. Ô. C. d., Franceschini Vicentini, I. B., & Vicentini, C. A. (2014). Morphology and histochemistry of the digestive tract in carnivorous freshwater Hemisorubim platyrhynchos (Siluriformes: Pimelodidae). Micron, 64, 10-19. https://doi.org/10.1016/j.micron.2014.03.011.
Farrell, A. P. G. (2011). Fish physiology: The multifunctional gut of fish (Vol. 30, 1st ed.). Burlington, MA: Elsevier.
Garcia, V. J. A., Hernández, J., & Pardo, S. C. (2008). Descripción morfológica del tubo digestivo de juveniles de rubio salminus affinis (Pisces: Characidae). Acta Biológica Colombiana, 13(3), 99-112.
Genten, F., Terwinghe, E., & Danguy, A. (2009). Digestive system. In Atlas of fish histology. 1st ed. (75-76). Boca Raton, FL: CRC Press. https://doi.org/10.1201/b10183.
Ghosh, S. K., & Chakrabarti, P. (2015). Histological, surface ultrastructural, and histochemical study of the stomach of red piranha, Pygocentrus nattereri (Kner). Archives of Polish Fisheries, 23(4), 205-215. https://doi.org/10.1515/aopf-2015-0023.
Gomez, D., Sunyer, J. O., & Salinas, I. (2013). The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish and Shellfish Immunology, 35, 1729-1739. https://doi.org/10.1016/j.fsi.2013.09.032.
Hernández, D. R., Pérez Gianeselli, M., & Domitrovic, H. A. (2009). Morphology, histology and Histochemistry of the digestive system of south American catfish (Rhamdia quelen). International Journal of Morphology, 27(1), 105-111. https://doi.org/10.4067/s0717-95022009000100019.
Hernández, D. R., Vigliano, F. A., Sánchez, S., Bermúdez, R., Domitrovic, H. A., & Quiroga, M. I. (2012). Neuroendocrine system of the digestive tract in Rhamdia quelen juvenile: An immunohistochemical study. Tissue and Cell, 44(4), 220-226. https://doi.org/10.1016/j.tice.2012.03.005.
Holmgren, S., & Olsson, C. (2009). Chapter 10 the neuronal and endocrine regulation of gut function. Fish Physiology, 28, 467-512. https://doi.org/10.1016/S1546-5098(09)28010-1.
Hossain, A. M., & Dutta, H. M. (1996). Phylogeny, ontogeny, structure and function of digestive tract appendages (caeca) in teleost fish. In J. S. Datta-Munshi & M. H. Dutta (Eds.), Fish morphology: horizons of new research, London, England: Taylor & Francis Inc.
Kadhim, K. H., Karim, A. J., & Kadhim, K. K. (2020). Histological and histochemical study of the liver and gall bladder of adult male common carp Cyprinus carpio. Plant Archives, 20(1), 438-442.
Kapoor, B. G., Smit, H., & Verighina, I. A. (1976). The Alimentary Canal and digestion in Teleosts. Advances in Marine Biology, 13(C), 109-239. https://doi.org/10.1016/S0065-2881(08)60281-3.
Lafont, A. G., Dufour, S., & Fouchereau-Peron, M. (2004). Characterisation and distribution of calcitonin gene-related peptide in a primitive teleost, the eel, Anguilla anguilla and comparison with calcitonin. Regulatory Peptides, 117(2), 141-148. https://doi.org/10.1016/j.regpep.2003.10.018.
Leknes, I. L. (2014). Goblet cell types in intestine of tiger barb and black tetra (Cyprinidae, Characidae: Teleostei). Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 43(5), 352-360. https://doi.org/10.1111/ahe.12083.
Lev, R., & Spicer, S. S. (1964). Specific staining of sulphate groups with Alcian blue at low pH. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 12, 309. https://doi.org/10.1177/12.4.309.
Liggitt, D., & Dintzis, S. M. (2012). Pancreas. In P. M. Treuting & S. M. Dintzis (Eds.), Comparative anatomy and histology: A mouse and human atlas (pp. 203-209). Cambridge, MA: Academic Press.
Løkka, G., Austbø, L., Falk, K., Bjerkås, I., & Koppang, E. O. (2013). Intestinal morphology of the wild Atlantic salmon ( Salmo salar ). Journal of Morphology, 274(8), 859-876. https://doi.org/10.1002/jmor.20142.
Løkka, G., & Koppang, E. O. (2016). Antigen sampling in the fish intestine. Developmental and Comparative Immunology, 64, 138-149. https://doi.org/10.1016/j.dci.2016.02.014.
Luna, L. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology (3rd ed.). New York, NY: Blakiston Division McGraw-Hill.
Machado, M. R. F., Souza, H. d. O., de Souza, V. L., de Azevedo, A., Goitein, R., & Nobre, A. D. (2013). Caracterização Morfológica e Anatômica do Tubo Digestório de Centropomus parallelus e C. undecimalis. Acta Scientiarum - Biological Sciences, 35(4), 467-474. https://doi.org/10.4025/actascibiolsci.v35i4.14352.
Martínez-Álvarez, R. M., Volkoff, H., Muñoz-Cueto, J. A., & Delgado, M. J. (2008). Molecular characterization of calcitonin gene-related peptide (CGRP) related peptides (CGRP, amylin, adrenomedullin and adrenomedullin-2/intermedin) in goldfish (Carassius auratus): Cloning and distribution. Peptides, 29(9), 1534-1543. https://doi.org/10.1016/j.peptides.2008.04.013.
Mazzoni, T. S., Viadanna, R. R., & Quagio-Grassiotto, I. (2019). Presence, localization and morphology of telocytes in developmental gonads of fishes. Journal of Morphology, 280(5), 654-665. https://doi.org/10.1002/jmor.20972.
McKay, D. M., & MacNaughton, W. K. (2012). Mechanisms and consequences of intestinal inflammation. In L. R. Johnson, F. K. Ghishan, J. D. Kaunitz, J. L. Merchant, H. M. Said & J. D. Wood (Eds.), Physiology of the gastrointestinal tract (Vol. 2, 5th, pp. 2075-2099). Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-12-382026-6.00078-6.
Mello, G. C. G., Santos, M. L., Arantes, F. P., Pessali, T. C., Brito, M. F. G., & Santos, J. E. (2019). Morphological characterisation of the digestive tract of the catfish Lophiosilurus alexandri Steindachner, 1876 (Siluriformes, Pseudopimelodidae). Acta Zoologica, 100(1), 14-23. https://doi.org/10.1111/azo.12224.
Mendonça, I., Matos, E., Rodrigues, G., Matos, P., Casal, G., & Azevedo, C. (2005). Rodlet cells from the gills and kidney of two Brazilian freshwater fishes: An ultrastructural study. Brazilian Journal of Morphological Sciences, 1889(4), 187-192.
Moawad, U., Awaad, A., & Tawfiek, M. (2017). Histomorphological, histochemical, and ultrastructural studies on the stomach of the adult African catfish (Clarias gariepinus). Journal of Microscopy and Ultrastructure, 5(3), 155-166. https://doi.org/10.1016/j.jmau.2016.08.002.
Mokhtar, D. M. (2015). Histological, histochemical and ultrastructural characterization of the pancreas of the grass carp (Ctenopharyngodon idella). European Journal of Anatomy, 19(2), 145-153.
Morrison, C. M., Fitzsimmons, K. M., & Wright, J. R. (2006). Atlas of tilapia histology. Sorrento, LA: World Aquaculture Society.
Munshi, J. S. D., & Dutta, H. M. (1996). Fish morphology: Horizon of new research. London, England: Taylor & Francis Inc. https://doi.org/10.1201/9780203755990.
Murray, H. M., Wright, G. M., & Goff, G. P. (1994). A study of the posterior esophagus in the winter flounder, Pleuronectes americanus, and the yellowtail flounder, Pleuronectes ferruginea: Morphological evidence for pregastric digestion? Canadian Journal of Zoology, 72(7), 1191-1198. https://doi.org/10.1139/z94-160.
Naguib, S., Rizkalla, W., & Abd El Ghafar, F. (2009). Comparative histological and ultrastructural studies on the liver and pancreas of Schilbe mystus and Labeo niloticus. Egyptian Journal of Aquatic Biology and Fisheries, 13(1), 107-127. https://doi.org/10.21608/ejabf.2009.2027.
Nejedli, S., & Gajger, I. T. (2013). Hepatopancreas in some sea fish from different species and the structure of the liver in teleost fish, common pandora, Pagellus erythinus (Linnaeus, 1758) and whiting, Merlangius merlangus euxinus (Nordmann, 1840). Veterinarski Arhiv, 83(4), 441-452.
Neumann, E., Paes, M. C. F., Mendes, J. M. R., Braga, F. M. S., & Nakaghi, L. S. O. (2018). Larval development of Brycon amazonicus (Teleostei, Bryconidae) with a focus on locomotory, respiratory and feeding structures. Journal of Fish Biology, 93(6), 1141-1150. https://doi.org/10.1111/jfb.13832.
Odokuma, E., & Omokaro, E. (2015). Comparative histologic anatomy of vertebrate liver. Annals of Bioanthropology, 3(1), 1. https://doi.org/10.4103/2315-7992.160728.
Parameswaran, S., Selvaraj, C., & Radhakrishnan, S. (1975). Observations on the biology of Labeo gonius (Hamilton). Indian Journal of Fisheries, 21(1), 54-75.
Pereira, R. T., Costa, L. S., Oliveira, I. R. C., Araújo, J. C., Aerts, M., Vigliano, F. A., & Rosa, P. V. (2015). Relative distribution of gastrin-, CCK-8-, NPY- and CGRP-immunoreactive cells in the digestive tract of dorado (Salminus brasiliensis). Tissue and Cell, 47(2), 123-131. https://doi.org/10.1016/j.tice.2015.01.009.
Pereira, R. T., Freitas, T. R., Oliveira, I. R. C., Costa, L. S., Vigliano, F. A., & Rosa, P. V. (2017). Endocrine cells producing peptide hormones in the intestine of Nile tilapia: Distribution and effects of feeding and fasting on the cell density. Fish Physiology and Biochemistry, 43(5), 1399-1412. https://doi.org/10.1007/s10695-017-0380-1.
Pereira, R. T., Nebo, C., Naves, L. P., Fortes-Silva, R., de Oliveira, I. R. C., Paulino, R. R., … Rosa, P. V. (2019). Distribution of goblet and endocrine cells in the intestine: A comparative study in Amazonian freshwater Tambaqui and hybrid catfish. Journal of Morphology, 281(1), 55-67. https://doi.org/10.1002/jmor.21079.
Pereyra, L. A., Domitrovic, H. A., & Sampietro, J. C. (1999). Microscopía Electrónica de Barrido del Tubo Digestivo del Surubí (Pseudoplatystoma coruscans y P . fasciaium ) (Pisces, Siluriformes). Actas Reunión de Comunicaciones Científicas y Tecnológicas-Unne, 10, 1-4.
Petcoff, G. M., Díaz, A. O., Escalante, A. H., & Goldemberg, A. L. (2006). Histology of the liver of Oligosarcus jenynsii (Ostariophysi, Characidae) from Los padres Lake, Argentina. Iheringia, Série Zoologia, 96(2), 205-208.
Petrinec, Z., Nejedli, S., Kužir, S., & Opačak, A. (2005). Mucosubstances of the digestive tract mucosa in northern pike (Esox lucius L.) and european catfish (Silurus glanis L.). Veterinarski Arhiv, 75(4), 317-327.
Raji, A. R., & Norouzi, E. (2010). Histological and histochemical study on the alimentary canal in walking catfish (Claris batrachus) and piranha (Serrasalmus nattereri). Iranian Journal of Veterinary Research, 11(3), 255-261.
Rebolledo, I. M., & Vial, J. D. (1979). Fine structure of the oxynticopeptic cell in the gastric glands of an elasmobranch species (Halaelurus chilensis). The Anatomical Record, 193(4), 805-821. https://doi.org/10.1002/ar.1091930405.
Reite, O. B. (2005). The rodlet cells of teleostean fish: Their potential role in host defence in relation to the role of mast cells/eosinophilic granule cells. Fish and Shellfish Immunology, 19(3), 253-267. https://doi.org/10.1016/j.fsi.2005.01.002.
Reite, O. B., & Evensen, Ø. (2006). Inflammatory cells of teleostean fish: A review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish and Shellfish Immunology, 20(2), 192-208. https://doi.org/10.1016/j.fsi.2005.01.012.
Rodrigues, A. P. O., & Cargnin-Ferreira, E. (2017). Morphology and histology of the Pirarucu (Arapaima gigas) digestive tract. International Journal of Morphology, 35(3), 950-957. https://doi.org/10.4067/s0717-95022017000300025.
Rodrigues, S. S., & Menin, E. (2006). Anatomia da cavidade bucofaringeana de Salminus brasiliensis (Cuvier, 1817)(Pisces, Characidae, Salmininae). Biotemas, 19(1), 41-50. https://doi.org/10.5007/%25x.
Rodrigues, S. S., & Menin, E. (2008). Anatomia do tubo digestivo de Salminus brasiliensis (Cuvier, 1817) (Pisces, Characidae, Salmininae). Biotemas, 21(2), 65-75. https://doi.org/10.5007/2175-7925.2008v21n2p65.
Rust, M. B. (2003). Nutritional physiology. In J. E. Halver & R. W. Hardy (Eds.), Fish nutrition (3rd, pp. 367-452). Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-012319652-1/50008-2.
Santos, G. M., Ferreira, E. J. G., & Zuanon, J. A. S. (2006). Peixes Comerciais de Manaus. Manaus, Brazil: Ibama/AM AM, ProVárzea, 49.
Santos, M. L., Arantes, F. P., Santiago, K. B., & Dos Santos, J. E. (2015). Morphological characteristics of the digestive tract of Schizodon knerii (Steindachner, 1875), (characiformes: Anostomidae): An anatomical, histological and histochemical study. Anais Da Academia Brasileira de Ciencias, 87(2), 867-878. https://doi.org/10.1590/0001-3765201520140230.
Sarkar, S., Jana, S., & De, S. (2020). Functional role of the rodlet cell and macrophage in neural protection of the olfactory neuroepithelium in a teleostean: Gobiid ( Pseudapocryptes lanceolatus (Bloch and Schneider, 1801)): An ultrastructural study. Journal of Microscopy and Ultrastructure, 8(2), 37-41. https://doi.org/10.4103/jmau.jmau_13_19.
Scocco, P., Accili, D., Menghi, G., & Ceccarelli, P. (1998). Unusual glycoconjugates in the oesophagus of a tilapine polyhybrid. Journal of Fish Biology, 53(1), 39-48. https://doi.org/10.1111/j.1095-8649.1998.tb00107.x.
Sheibani, M. T., & Yali, M. P. (2006). Histological structures of the accessory glands of the digestive system in adult Caspian Sea beluga (Huso huso). Journal of Applied Ichthyology, 22(SUPPL 1), 193-195. https://doi.org/10.1111/j.1439-0426.2007.00950.x.
Shiojiri, N., Kametani, H., Ota, N., Akai, Y., Fukuchi, T., Abo, T., … Kawakami, H. (2018). Phylogenetic analyses of the hepatic architecture in vertebrates. Journal of Anatomy, 232(2), 200-213. https://doi.org/10.1111/joa.12749.
Siderits, D., & Bielek, E. (2009). Rodlet cells in the thymus of the zebrafish Danio rerio (Hamilton, 1822). Fish & Shellfish Immunology, 27(4), 539-548. https://doi.org/10.1016/j.fsi.2009.06.020.
Speilberg, L., Evensen, Ø., & Nafstad, P. (1994). Liver of juvenile Atlantic salmon, Salmo salar L.: A light, transmission, and scanning electron microscopic study, with special reference to the sinusoid. The Anatomical Record, 240(3), 291-307. https://doi.org/10.1002/ar.1092400302.
Suvarna, K. S., Layton, C., & Bancroft, J. D. (2012). Bancroft's theory and practice of histological techniques. The Journal of Pathology, 164, 281. https://doi.org/10.1002/path.1711640316.
Teles, A., Salas-Leiva, J., Alvarez-González, C. A., Gisbert, E., Ibarra-Castro, L., Urbiola, J. C. P., & Tovar-Ramírez, D. (2017). Histological study of the gastrointestinal tract in longfin yellowtail (Seriola rivoliana) larvae. Fish Physiology and Biochemistry, 43(6), 1613-1628. https://doi.org/10.1007/s10695-017-0397-5.
Vaissi, S., Parto, P., & Sharifi, M. (2017). Anatomical and histological study of the liver and pancreas of two closely related mountain newts Neurergus microspilotus and N. kaiseri (Amphibia: Caudata: Salamandridae). Zoologia, 34, 1-38.
Vidal, M. R., Ruiz, T. F. R., dos Santos, D. D., Gardinal, M. V. B., de Jesus, F. L., Faccioli, C. K., … Vicentini, C. A. (2019). Morphological and histochemical characterisation of the mucosa of the digestive tract in matrinxã Brycon amazonicus (Teleostei: Characiformes). Journal of Fish Biology, 96(1), 251-260. https://doi.org/10.1111/jfb.14217.
Volkoff, H., Hoskins, L. J., & Tuziak, S. M. (2010). Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: Potential application in aquaculture. General and Comparative Endocrinology, 167(3), 352-359. https://doi.org/10.1016/j.ygcen.2009.
Wilson, J. M., & Castro, L. F. C. (2010). Morphological diversity of the gastrointestinal tract in fishes. Fish Physiology, 30, 1-55. https://doi.org/10.1016/S1546-5098(10)03001-3.
Yang, R., Xie, C., Fan, Q., Gao, C., & Fang, L. (2010). Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae. Aquaculture, 302(1-2), 112-123. https://doi.org/10.1016/j.aquaculture.2010.02.020.
Grant Information:
305734/2016-4 Conselho Nacional de Desenvolvimento Científico e Tecnológico; CAPG030 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; PPM 00227/12 Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Contributed Indexing:
Keywords: carnivorous fish; digestive tract; goblet cells; histochemistry; myenteric plexus
Entry Date(s):
Date Created: 20210604 Date Completed: 20211012 Latest Revision: 20211012
Update Code:
20240105
DOI:
10.1111/jfb.14821
PMID:
34085710
Czasopismo naukowe
The digestive system of teleost shows remarkable functional and morphological diversity. In this study, the digestive tract and accessory organs of dourado Salminus brasiliensis are characterized using anatomical, histological, histochemical and immunohistochemical analyses. The existence of taste buds bordered by microridges in the oesophagus of dourado was recorded for the first time, thus showing that the species drives food intake by either swallowing or rejecting the food item. The Y-shaped stomach of dourado consisted of cardiac, cecal and pyloric regions with tubular gastric glands registered solely in the cardiac and cecal segments. The intestine is a short N-shaped tube with two loops, an intestinal coefficient of 0.73. The structure of pyloric caeca is similar to that of the intestine wall, comprising tunica mucosa, tela submucosa, tunica muscularis and tunica serosa layers. Histochemical analyses revealed an increased incidence of goblet cells from the midgut to the hindgut segment. A well-developed enteric plexus of scattered nerve cell and fibres are found along the digestive tract, and the calcitonin gene-related peptide (CGRP) immunoreactive neurons and fibres were identified in the myenteric plexus from the oesophagus to the hindgut. The exocrine pancreas appears diffuse in the mesentery around the stomach, intestine and also reaches the liver, and the endocrine pancreas is organized as a few islets of Langerhans. The liver comprises three distinct, asymmetric lobes, and the portal triad arrangement was registered in this tissue.
(© 2021 Fisheries Society of the British Isles.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies