Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Photoperiodic control of reproductive arrest in the oak-inhabiting spider mite Schizotetranychus brevisetosus (Acari: Tetranychidae).

Tytuł:
Photoperiodic control of reproductive arrest in the oak-inhabiting spider mite Schizotetranychus brevisetosus (Acari: Tetranychidae).
Autorzy:
Oda N; Faculty of Agriculture and Marine Science, Kochi University, 200 Monobeotsu, Nankoku, Kochi, 783-8502, Japan.
Ito K; Faculty of Agriculture and Marine Science, Kochi University, 200 Monobeotsu, Nankoku, Kochi, 783-8502, Japan. .
Źródło:
Experimental & applied acarology [Exp Appl Acarol] 2021 Jun; Vol. 84 (2), pp. 389-405. Date of Electronic Publication: 2021 Jun 04.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Amsterdam ; New York : Elsevier, [c1985-
MeSH Terms:
Quercus*
Tetranychidae*
Animals ; Female ; Japan ; Photoperiod ; Reproduction
References:
Arabuli T, Gotoh T (2018) A new species of spider mite, Oligonychus neocastaneae sp. nov. (Acari: Tetranychidae), from Japan. Zootaxa 4378:563–572. https://doi.org/10.11646/zootaxa.4378.4.7. (PMID: 10.11646/zootaxa.4378.4.729689998)
Batz ZA, Clemento AJ, Fritzenwanker J, Ring TJ, Garza JC, Armbruster PA (2020) Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito. Evolution 74:1451–1465. https://doi.org/10.1111/evo.14029. (PMID: 10.1111/evo.14029324905638023039)
Bradford MJ, Roff DA (1993) Bet hedging and the diapause strategies of the cricket Allonemobius fasciatus. Ecology 74:1129–1135. https://doi.org/10.2307/1940482. (PMID: 10.2307/1940482)
Broufas GD, Koveos DS (2000) Threshold temperature for post-diapause development and degree-days to hatching of winter eggs of the European red mite (Acari: Tetranychidae) in northern Greece. Env Entomol 29:710–713. https://doi.org/10.1603/0046-225X-29.4.710. (PMID: 10.1603/0046-225X-29.4.710)
Bryon A, Kurlovs AH, Van Leeuwen T, Clark RM (2017) A molecular–genetic understanding of diapause in spider mites: current knowledge and future directions. Physiol Entomol 42:211–224. https://doi.org/10.1111/phen.12201. (PMID: 10.1111/phen.12201)
Cohen D (1970) A theoretical model for the optimal timing of diapause. Am Nat 104:389–400. https://doi.org/10.1086/282672. (PMID: 10.1086/282672)
Crawley MJ (2005) Statistics: an introduction using R. Wiley, West Sussex. (PMID: 10.1002/9781119941750)
Danilevskii AS (1965) Photoperiodism and seasonal development of insects. Oliver & Boyd, Edinburgh.
Dingle H (1976) Migration and diapause in tropical, temperate, and island milkweed bugs. In: Dingle H (ed) Evolution of insect migration and diapause. Springer, Berlin, pp 254–276.
Ehara S (1989) Four new species of spider mites (Acarina: Tetranychidae). Proc Jpn Soc Syst Zool 40:28–38. https://doi.org/10.19004/pjssz.40.0_28. (PMID: 10.19004/pjssz.40.0_28)
Ehara S, Gotoh T (2007) Two new species of Oligonychus closely related to O. gotohi Ehara (Acari: Tetranychidae). Int J Acarol 33:15–20. https://doi.org/10.1080/01647950708684495. (PMID: 10.1080/01647950708684495)
Ehara S, Gotoh T (2009) Colored guide to the plant mites of Japan. Zenkoku Noson Kyoiku Kyokai, Tokyo (in Japanese).
Gotoh T (1986a) Lifecycle variation in Panonychus akitanus Ehara (Acarina:Tetranychidae). Exp Appl Acarol 2:125–136. https://doi.org/10.1007/bf01213756. (PMID: 10.1007/bf01213756)
Gotoh T (1986b) Local variation in overwintering stages of Panonychus akitanus Ehara (Acarina: Tetranychidae). Exp Appl Acarol 2:137–151. https://doi.org/10.1007/BF01213757. (PMID: 10.1007/BF01213757)
Gotoh T, Bruin J, Sabelis M, Menken S (1993) Host race formation in Tetranychus urticae: genetic differentiation, host plant preference, and mate choice in a tomato and a cucumber strain. Entomol Exp Appl 68:171–178. https://doi.org/10.1007/bf02380535. (PMID: 10.1007/bf02380535)
Gotoh T, Ishikawa Y, Kitashima Y (2003) Life-history traits of the six Panonychus species from Japan (Acari: Tetranychidae). Exp Appl Acarol 29:241–252. https://doi.org/10.1023/A:1025810731386. (PMID: 10.1023/A:102581073138614635811)
Gotoh T, Kameyama Y (2014) Low temperature induces embryonic diapause in the spider mite Eotetranychus Smithi. J Insect Sci 14:68. https://doi.org/10.1093/jis/14.1.68. (PMID: 10.1093/jis/14.1.68253732154207514)
Ito K (2003) Effect of leaf condition on diapause induction of a Kanzawa spider mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) population on tea plants. Appl Entomol Zool 38:559–563. https://doi.org/10.1303/aez.2003.559. (PMID: 10.1303/aez.2003.559)
Ito K (2007) Negative genetic correlation between diapause duration and fecundity after diapause in a spider mite. Ecol Entomol 32:643–650. https://doi.org/10.1111/j.1365-2311.2007.00916.x. (PMID: 10.1111/j.1365-2311.2007.00916.x)
Ito K (2010) Effect of host plants on diapause induction in immature and adult Tetranychus kanzawai (Acari: Tetranychidae). Exp Appl Acarol 52:11–17. https://doi.org/10.1007/s10493-010-9342-3. (PMID: 10.1007/s10493-010-9342-320186464)
Ito K (2014) Intra-population genetic variation in diapause incidence of adult-diapausing Tetranychus pueraricola (Acari: Tetranychidae). Ecol Entomol 39:186–194. https://doi.org/10.1111/een.12084. (PMID: 10.1111/een.12084)
Ito K (2019) Lethal attack of Schizotetranychus brevisetosus Ehara (Acari: Tetranychidae) on predatory midge larva. Syst Appl Acarol 24:187–193. https://doi.org/10.11158/saa.24.2.1. (PMID: 10.11158/saa.24.2.1)
Ito K (2020) Predators of the nest-making spider mite Schizotetranychus brevisetosus (Acari: Tetranychidae). J Acarol Soc Jpn 29:59–70. https://doi.org/10.2300/acari.29.59. (PMID: 10.2300/acari.29.59)
Ito K, Saito Y (2006) Effects of host-plant species on diapause induction of the Kanzawa spider mite, Tetranychus kanzawai. Entomol Exp Appl 121:177–184. https://doi.org/10.1111/j.1570-8703.2006.00471.x. (PMID: 10.1111/j.1570-8703.2006.00471.x)
Ito K, Chae Y (2018a) Cold hardiness in immature stages and adults in the adult-diapausing spider mite Stigmaeopsis longus. Physiol Entomol 44:11–19. https://doi.org/10.1111/phen.12271. (PMID: 10.1111/phen.12271)
Ito K, Hamada E (2018b) Adult female sensitivity to daylength conditions in terms of winter-egg production in Schizotetranychus brevisetosus Ehara (Acari: Tetranychidae). J Acarol Soc Jpn 27:69–76. https://doi.org/10.2300/acari.27.69. (PMID: 10.2300/acari.27.69)
Ito K, Yamanishi N (2019) Production of winter eggs in Schizotetranychus brevisetosus (Acari: Tetranychidae) inhabiting evergreen Japanese blue oak. Exp Appl Acarol 78:521–534. https://doi.org/10.1007/s10493-019-00402-3. (PMID: 10.1007/s10493-019-00402-331346835)
Ito K, Yokoyama N, Kumekawa Y, Hayakawa H, Minamiya Y, Nakaishi K, Fukuda T, Arakawa R, Saito Y (2012) Effects of inbreeding on variation in diapause duration and early fecundity in the Kanzawa spider mite. Entomol Exp Appl 144:202–208. https://doi.org/10.1111/j.1570-7458.2012.01284.x. (PMID: 10.1111/j.1570-7458.2012.01284.x)
Japan Meteorological Agency (2021) Weather, Climate & Earthquake Information. http://www.data.jma.go.jp/obd/stats/etrn/index.php . Accessed 24 Feb 2021 (in Japanese).
Kawakami Y, Goto SG, Ito K, Numata H (2009) Suppression of ovarian development and vitellogenin gene expression in the adult diapause of the two-spotted spider mite Tetranychus urticae. J Insect Physiol 55:70–77. https://doi.org/10.1016/j.jinsphys.2008.10.007. (PMID: 10.1016/j.jinsphys.2008.10.00719022260)
Khodayari S, Moharramipour S, Kamali K, Javaran MJ, Renault D (2012) Effects of acclimation and diapause on the thermal tolerance of the two-spotted spider mite Tetranychus urticae. J Therm Biol 37:419–423. https://doi.org/10.1016/j.jtherbio.2012.04.005. (PMID: 10.1016/j.jtherbio.2012.04.005)
Khodayari S, Moharramipour S, Larvor V, Hidalgo K, Renault D (2013) Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae. PLoS ONE 8:e54025. https://doi.org/10.1371/journal.pone.0054025. (PMID: 10.1371/journal.pone.0054025233497793547965)
Kiritani K (2012) The low development threshold temperature and the thermal constant in insects and mites in Japan (second edition). Bull Natl Inst Agro Environ Sci 31:1–74. https://doi.org/10.24514/00002995 (in Japanese). (PMID: 10.24514/00002995)
Komatsu T, Akimoto S (1995) Genetic differentiation as a result of adaptation to the phenologies of individual host trees in the galling aphid Kaltenbachiella japonica. Ecol Entomol 20:33–42. https://doi.org/10.1111/j.1365-2311.1995.tb00426.x. (PMID: 10.1111/j.1365-2311.1995.tb00426.x)
Koveos DS, Broufas GD (1999) Diapause induction and termination in eggs of the fruit tree red spider mite Panonychus ulmi in northern Greece. Exp Appl Acarol 23:669–679. https://doi.org/10.1023/A:1006232821653. (PMID: 10.1023/A:1006232821653)
Koveos DS, Kroon A, Veerman A (1993) Geographic variation of diapause intensity in the spider mite Tetranychus urticae. Physiol Entomol 18:50–56. https://doi.org/10.1111/j.1365-3032.1993.tb00448.x. (PMID: 10.1111/j.1365-3032.1993.tb00448.x)
Koveos DS, Veerman A, Broufas GD, Exarhou A (1999) Altitudinal and latitudinal variation in diapause characteristics in the spider mite Tetranychus urticae Koch. Entomol Sci 2:607–613.
Kroon A, Veenendaal RL (1998) Trade-off between diapause and other life-history traits in the spider mite Tetranychus urticae. Ecol Entomol 23:298–304. https://doi.org/10.1046/j.1365-2311.1998.00142.x. (PMID: 10.1046/j.1365-2311.1998.00142.x)
Kroon A, Veenendaal RL, Egas M, Bruin J, Sabelis MW (2005) Diapause incidence in the two-spotted spider mite increases due to predator presence, not due to selective predation. Exp Appl Acarol 35:73–81. https://doi.org/10.1007/s10493-004-1980-x. (PMID: 10.1007/s10493-004-1980-x15777002)
Kroon A, Veenendaal RL, Bruin J, Egas M, Sabelis MW (2008) “Sleeping with the enemy”—predator-induced diapause in a mite. Naturwissenschaften 95:1195–1198. https://doi.org/10.1007/s00114-008-0442-4. (PMID: 10.1007/s00114-008-0442-418754089)
Leather SR, Walters KFA, Bale JS (1993) The ecology of insect overwintering. Cambridge University Press, Cambridge. (PMID: 10.1017/CBO9780511525834)
Lees AD (1953) Environmental factors controlling the evocation and termination of diapause in the fruit tree red spider mite Metatetranychus ulmi Koch (Acarina: Tetranychidae). Ann Appl Biol 40:449–486. https://doi.org/10.1111/j.1744-7348.1953.tb02387.x. (PMID: 10.1111/j.1744-7348.1953.tb02387.x)
Malagnini V, Navajas M, Migeon A, Duso C (2012) Differences between sympatric populations of Eotetranychus carpini collected from Vitis vinifera and Carpinus betulus: insights from host-switch experiments and molecular data. Exp Appl Acarol 56:209–219. https://doi.org/10.1007/s10493-012-9511-7. (PMID: 10.1007/s10493-012-9511-722270111)
Masuda C, Tamura K, Chae Y, Fukuda T, Arakawa R, Ito K, Saito Y (2015) Lethal male combats in Schizotetranychus brevisetosus (Acari: Tetranychidae) on blue Japanese oak (Quercus glauca). Exp Appl Acarol 67:259–268. https://doi.org/10.1007/s10493-015-9938-8. (PMID: 10.1007/s10493-015-9938-826122967)
Matsuda T, Morishita M, Hinomoto N, Gotoh T (2014) Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5’ end of the 28S rRNA genes indicates that several genera are polyphyletic. PLoS ONE 9:e108672. https://doi.org/10.1371/journal.pone.0108672. (PMID: 10.1371/journal.pone.0108672252896394188524)
Matsuda T, Kozaki T, Ishii K, Gotoh T (2018) Phylogeny of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) inferred from RNA-Seq data. PLoS ONE 13:e0203136. https://doi.org/10.1371/journal.pone.0203136. (PMID: 10.1371/journal.pone.0203136301927946128517)
McNamara JM (1994) Timing of entry into diapause: optimal allocation to “growth” and “reproduction” in a stochastic environment. J Theor Biol 168:201–209. https://doi.org/10.1006/jtbi.1994.1099. (PMID: 10.1006/jtbi.1994.1099)
Morimoto N, Takafuji A (1983) Comparison of diapause attributes and host preference among three populations of the citrus red mite, Panonychus citri (McGregor) occurring in the southern part of Okayama Prefecture, Japan. Jap J Appl Entomol Zool 27:224–228. https://doi.org/10.1303/jjaez.27.224 (in Japanese). (PMID: 10.1303/jjaez.27.224)
Morishita M, Takafuji A (1999a) Diapause characteristics of the Kanzawa spider mite, Tetraychus kanzawai Kishida, in pea fields of central Wakayama Prefecture, Japan. Appl Entomol Zool 43:185–188. (PMID: 10.1303/jjaez.43.185)
Morishita M, Takafuji A (1999b) Life cycle and inter-plant movement of Tetranychus kanzawai Kishida (Acari: Tetranychidae) between crop hosts and border vegetation in pea-watermelon fields. Jpn J Appl Entomol Zool 43:129–134 (in Japanese). (PMID: 10.1303/jjaez.43.129)
Nagatomo S (1973) Biological observation on the six-spotted spider mite, Eotetranychus sexmaculatus RILEY. Chagyo Kenkyu Hokoku 40:31–36 (in Japanese). (PMID: 10.5979/cha.1973.40_31)
National Astronomical Observatory of Japan (2021) Local Calendar for Kouchi. http://eco.mtk.nao.ac.jp/koyomi/dni/2020/dni40.html.en . Accessed 26 April 2021.
Oku K, Yano S, Takafuji A (2002) Different maternal effects on offspring performance in tetranychid mites, Tetranychus kanzawai and T. urticae (Acari: Tetranychidae). Appl Entomol Zool 37:425–429. https://doi.org/10.1303/aez.2002.425. (PMID: 10.1303/aez.2002.425)
Parr WJ, Hussey NW (1966) Diapause in the glasshouse red spider mite (Tetranychus urticae Koch): a synthesis of present knowledge. Hortic Res 6:1–21.
R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ . Accessed 1 August 2018.
Roff DA (2002) Life history evolution. Sinauer Associates, Sunderland.
Roy S, Muraleedharan N, Mukhopadhyay A (2014) The red spider mite, Oligonychus coffeae (Acari: Tetranychidae): its status, biology, ecology and management in tea plantations. Exp Appl Acarol 63:431–463. https://doi.org/10.1007/s10493-014-9800-4. (PMID: 10.1007/s10493-014-9800-424705870)
Saito Y (1983) The concept of “life types” in Tetranychinae. An attempt to classify the spinning behaviour of Tetranychinae. Acarologia 24:377–391.
Saito Y (2010) Plant mites and sociality: diversity and evolution. Springer, Tokyo. (PMID: 10.1007/978-4-431-99456-5)
Saito Y, Sakagami T, Sahara K (2002) Differences in diapause attributes between two clinal forms distinguished by male-to-male aggression in a subsocial spider mite, Schizotetranychus miscanthi Saito. Ecol Res 17:645–653. https://doi.org/10.1046/j.1440-1703.2002.00522.x. (PMID: 10.1046/j.1440-1703.2002.00522.x)
Sakagami T (2002) Phylogenetic analysis of subfamily Tetranychinae (Acari: Tetranychidae) in Japan, based on 28S ribosomal DNA sequences: Does the celarius group belong to the genus Schizotetranychus? Dissertation, Hokkaido University.
Seger J, Brockmann HJ (1987) What is bet-hedging? Oxf Surv Evol Biol 4:182–211.
Shimazaki S, Ullah MS, Gotoh T (2019) Seasonal occurrence and development of three closely related Oligonychus species (Acari: Tetranychidae) and their associated natural enemies on fagaceous trees. Exp Appl Acarol 79:47–68. https://doi.org/10.1007/s10493-019-00410-3. (PMID: 10.1007/s10493-019-00410-331388896)
Shimizu Y, Hanaka H (1975) Influence of day length on diapause of Kanzawa spider mite. Proc Kanto-Tosan Plant Prot Soc 22:92 (in Japanese).
Shinkaji N (1975) Seasonal occurrence of the winter eggs and environmental factors controlling the evocation of diapause in the common conifer spider mite, Oligonychus ununguis (Jacobi), on chestnut (Acarina: Tetranychidae). Jpn J Appl Entomol Zool 19:105–111 (in Japanese). (PMID: 10.1303/jjaez.19.105)
Sousa VC, Zélé F, Rodrigues LR, Godinho DP, Charlery de la Masselière M, Magalhães S (2019) Rapid host-plant adaptation in the herbivorous spider mite Tetranychus urticae occurs at low cost. Curr Opin Insect Sci 36:82–89. https://doi.org/10.1016/j.cois.2019.08.006. (PMID: 10.1016/j.cois.2019.08.00631539789)
Suzuki T, Watanabe M, Takeda M (2009) UV tolerance in the two-spotted spider mite, Tetranychus urticae. J Insect Physiol 55:649–654. https://doi.org/10.1016/j.jinsphys.2009.04.005. (PMID: 10.1016/j.jinsphys.2009.04.00519394340)
Tajima R, Ohashi K, Takafuji A (2007) Specific adaptation of sympatric populations of the Kanzawa spider mite, Tetranychus kanzawai (Acari: Tetranychidae) to three host plants. J Acarol Soc Jap 16:21–27. https://doi.org/10.2300/acari.16.21 (in Japanese). (PMID: 10.2300/acari.16.21)
Takafuji A, Kamibayashi M (1984) Life cycle of a non-diapausing population of the two-spotted spider mite, Tetranychus urticae Koch in a pear orchard. Res Popul Ecol 26:113–123. (PMID: 10.1007/BF02515511)
Takafuji A, Tsuda Y (1992) Coexistence of Tetranychus urticae with different diapause capacities: a mathematical model. Exp Appl Acarol 14:251–260. https://doi.org/10.1007/BF01200567. (PMID: 10.1007/BF01200567)
Takafuji A, So P-M, Tsuno N (1991) Inter- and intra-population variations in diapause attribute of the two-spotted spider mite, Tetranychus urticae Koch, in Japan. Res Popul Ecol 33:331–344. https://doi.org/10.1303/aez.2003.225. (PMID: 10.1303/aez.2003.225)
Takafuji A, Santoso S, Hinomoto N (2001) Host-related differences in diapause characteristics of different geographical populations of the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae), in Japan. Appl Entomol Zool 36:177–184. https://doi.org/10.1303/aez.2001.177. (PMID: 10.1303/aez.2001.177)
Takafuji A, Santoso S, Hinomoto N, Shih C-IT, Ho C-C, Gotoh T (2003) Diapause characteristics of two species of tetranychid mites (Acari: Tetranychidae) in southern Japan and Taiwan. Appl Entomol Zool 38:225–232. (PMID: 10.1303/aez.2003.225)
Tamura K, Ito K (2017) Extremely low fecundity and highly female-biased sex ratio in nest-living spider mite Schizotetranychus brevisetosus (Acari: Tetranychidae). Syst Appl Acarol 22:170–183. https://doi.org/10.11158/saa.22.2.2. (PMID: 10.11158/saa.22.2.2)
Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New York.
Taylor F (1986a) The fitness functions associated with diapause induction in arthropods I. The effects of age structure. Theor Popul Biol 30:76–92. https://doi.org/10.1016/0040-5809(86)90025-0. (PMID: 10.1016/0040-5809(86)90025-0)
Taylor F (1986b) The fitness functions associated with diapause induction in arthropods II. The effects of fecundity and survivorship on the optimum. Theor Popul Biol 30:93–110. https://doi.org/10.1016/0040-5809(86)90026-2. (PMID: 10.1016/0040-5809(86)90026-2)
Tsuda Y, Takafuji A, Kuno E (1997) Maintenance of diapause variability in the two-spotted spider mite, Tetranychus urticae, in a heterogeneous and stochastic environment. Res Popul Ecol 39:77–82. https://doi.org/10.1007/BF02765252. (PMID: 10.1007/BF02765252)
Uchida M (1982) Ecological studies on the abundance and diapause of spider mites and the damage caused by the spider mites in Japanese pear orchards. Spec Bull Tottori Fruit Tree Exp Stn 2:1–63 (in Japanese).
Veerman A (1985) Diapause. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 279–316.
Xu J, Deng M, Jiang X-L, Westwood M, Song Y-G, Turkington R (2015) Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genet Genomes 11:805. https://doi.org/10.1007/s11295-014-0805-2. (PMID: 10.1007/s11295-014-0805-2)
Yin W-D, Qiu G-S, Yan W-T, Sun L-N, Zhang H-J, Ma C-S, Adaobi UP (2013) Age-stage two-sex life tables of Panonychus ulmi (Acari: Tetranychidae), on different apple varieties. J Econ Entomol 106:2118–2125. https://doi.org/10.1603/EC12491. (PMID: 10.1603/EC1249124224254)
Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, Upper Saddle River.
Grant Information:
D5 a Cabinet Office grant-in-aid: the Advanced Next-Generation Greenhouse Horticulture by IoP (Internet of Plants)
Contributed Indexing:
Keywords: Egg diapause; Evergreen host plant; Host phenology; Quercus glauca; Web-nesting
Entry Date(s):
Date Created: 20210604 Date Completed: 20210611 Latest Revision: 20210611
Update Code:
20240105
DOI:
10.1007/s10493-021-00630-6
PMID:
34086141
Czasopismo naukowe
Populations of Schizotetranychus brevisetosus Ehara (Acari: Tetranychidae), which live on the evergreen oak (Quercus glauca), survive the coldest months as either adult females or winter eggs. Adult females comprise the majority of the population in early November and oviposit from late November to early March. Most winter eggs hatch by late March, and adults of the next generation emerge in April. This species is considered an egg-diapausing species, but the environmental cues that regulate female reproductive arrest and resumption are mostly unknown. We investigated the photoperiodic responses of autumn reproductive arrest in 10 populations collected from different elevations in Shikoku, Japan. All populations showed long-day responses to critical daylength (CDL) around 12.2 h light (12.2L) at 20 °C, though there was no linear relationship between CDL and altitude. This result explains the steep decline in the proportion of summer eggs in November. Nonreproductive females developed under 10L at 20 °C commenced oviposition 14.3-20.6 days after transferring to 15L. This long pre-oviposition period explains the reduction in eggs before winter reproduction and suggests shallow adult diapause. Eggs thus obtained hatched in 12.9-15.3 days, similarly to summer eggs. Therefore, egg diapause in S. brevisetosus is much shallower than in species on deciduous hosts, which lay their winter eggs in early autumn to hatch at leaf flush in spring. The reproductive arrest and short hatching period may be an adaptation allowing egg-laying in midwinter, when predation pressure is low.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies