Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Two conifer GUX clades are responsible for distinct glucuronic acid patterns on xylan.

Tytuł:
Two conifer GUX clades are responsible for distinct glucuronic acid patterns on xylan.
Autorzy:
Lyczakowski JJ; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
Yu L; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
Terrett OM; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
Fleischmann C; Scion, 49 Sala Street, Rotorua, 3020, New Zealand.
Temple H; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
Thorlby G; Scion, 49 Sala Street, Rotorua, 3020, New Zealand.
Sorieul M; Scion, 49 Sala Street, Rotorua, 3020, New Zealand.
Dupree P; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
Źródło:
The New phytologist [New Phytol] 2021 Sep; Vol. 231 (5), pp. 1720-1733. Date of Electronic Publication: 2021 Jul 06.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Arabidopsis*
Tracheophyta*/genetics
Cell Wall ; Glucuronic Acid ; Plant Breeding ; Xylans
References:
Addison B, Stengel D, Bharadwaj VS, Happs RM, Doeppke C, Wang T, Bomble YJ, Holland GP, Harman-Ware AE. 2020. Selective one-dimensional 13C-13C spin-diffusion solid-state nuclear magnetic resonance methods to probe spatial arrangements in biopolymers including plant cell walls, peptides, and spider silk. Journal of Physical Chemistry B 124: 9870-9883.
Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. Proceedings of the National Academy of Sciences, USA 115: 6506-6511.
Berglund J, Kishani S, de Carvalho DM, Lawoko M, Wohlert J, Henriksson G, Lindstrom ME, Wagberg L, Vilaplana F. 2020a. Acetylation and sugar composition influence the (in)solubility of plant beta-mannans and their interaction with cellulose surfaces. ACS Sustainable Chemistry & Engineering 8: 10027-10040.
Berglund J, Mikkelsen D, Flanagan BM, Dhital S, Gaunitz S, Henriksson G, Lindström ME, Yakubov GE, Gidley MJ, Vilaplana F. 2020b. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nature Communications 11: 4692.
Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911-917.
Bromley JR, Busse-Wicher M, Tryfona T, Mortimer JC, Zhang Z, Brown DM, Dupree P. 2013. GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. The Plant Journal 74: 423-434.
Buschiazzo E, Ritland C, Bohlmann J, Ritland K. 2012. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evolutionary Biology 12: 8.
Busse-Wicher M, Gomes TCF, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P. 2014. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. The Plant Journal 79: 492-506.
Busse-Wicher M, Grantham NJ, Lyczakowski JJ, Nikolovski N, Dupree P. 2016a. Xylan decoration patterns and the plant secondary cell wall molecular architecture. Biochemical Society Transactions 44: 74-78.
Busse-Wicher M, Li A, Silveira RL, Pereira CS, Tryfona T, Gomes TCF, Skaf MS, Dupree P. 2016b. Evolution of xylan substitution patterns in gymnosperms and angiosperms: implications for xylan interaction with cellulose. Plant Physiology 171: 2418-2431.
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 735-743.
Danielsson S, Kisara K, Lindstrom ME. 2006. Kinetic study of hexenuronic and methylglucuronic acid reactions in pulp and in dissolved xylan during kraft pulping of hardwood. Industrial & Engineering Chemistry Research 45: 2174-2178.
Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC. 2011. Nanostructure of cellulose microfibrils in spruce wood. Proceedings of the National Academy of Sciences, USA 108: E1195-E1203.
Giummarella N, Lawoko M. 2016. Structural basis for the formation and regulation of lignin-xylan bonds in birch. ACS Sustainable Chemistry & Engineering 4: 5319-5326.
Grantham NJ, Wurman-Rodrich J, Terrett OM, Lyczakowski JJ, Stott K, Iuga D, Simmons TJ, Durand-Tardif M, Brown SP, Dupree R et al. 2017. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Plants 3: 859-865.
Jarvis MC. 2018. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 376: 20170045.
Jokipii-Lukkari S, Sundell D, Nilsson O, Hvidsten TR, Street NR, Tuominen H. 2017. NorWood: a gene expression resource for evo-devo studies of conifer wood development. New Phytologist 216: 482-494.
Kang X, Kirui A, Widanage MCD, Mentink-Vigier F, Cosgrove DJ, Wang T. 2019. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature Communications 10: 347.
Kim M-H, Tran TNA, Cho J-S, Park E-J, Lee H, Kim D-G, Hwang S, Ko J-H. 2021. Wood transcriptome analysis of Pinus densiflora identifies genes critical for secondary cell wall formation and NAC transcription factors involved in tracheid formation. Tree Physiology. doi: 10.1093/treephys/tpab001.
Kumar V, Hainaut M, Delhomme N, Mannapperuma C, Immerzeel P, Street NR, Henrissat B, Mellerowicz EJ. 2019. Poplar carbohydrate-active enzymes: whole-genome annotation and functional analyses based on RNA expression data. The Plant Journal 99: 589-609.
Lyczakowski JJ, Wicher KB, Terrett OM, Faria-Blanc N, Yu XL, Brown D, Krogh K, Dupree P, Busse-Wicher M. 2017. Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy. Biotechnology for Biofuels 10: 224.
Martinez-Abad A, Berglund J, Toriz G, Gatenholm P, Henriksson G, Lindstrom M, Wohlert J, Vilaplana F. 2017. Regular motifs in xylan modulate molecular flexibility and interactions with cellulose surfaces. Plant Physiology 175: 1579-1592.
Martínez-Abad A, Jiménez-Quero A, Wohlert J, Vilaplana F. 2020. Influence of the molecular motifs of mannan and xylan populations on their recalcitrance and organization in spruce softwoods. Green Chemistry 22: 3956-3970.
Matasci N, Hung LH, Yan ZX, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T, Ayyampalayam S, Barker M et al. 2014. Data access for the 1,000 Plants (1KP) project. Gigascience 3: 17.
Mortimer JC. 2017. Structural analysis of cell wall polysaccharides using PACE. Xylem: Methods and Protocols, 1544, 223-231.
Mortimer JC, Faria-Blanc N, Yu X, Tryfona T, Sorieul M, Ng YZ, Zhang Z, Stott K, Anders N, Dupree P. 2015. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. The Plant Journal 83: 413-527.
Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP, Weimar T, Yu X, Seffen KA, Stephens E, Turner SR et al. 2010. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proceedings of the National Academy of Sciences, USA 107: 17409-17414.
Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T. 2018. Direct evidence for alpha ether linkage between lignin and carbohydrates in wood cell walls. Scientific Reports 8: 6538.
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579-584.
Oinonen P, Zhang LM, Lawoko M, Henriksson G. 2015. On the formation of lignin polysaccharide networks in Norway spruce. Phytochemistry 111: 177-184.
Paes G, Berrin J-G, Beaugrand J. 2012. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnology Advances 30: 564-592.
Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG et al. 2011. A large and persistent carbon sink in the world's forests. Science 333: 988-993.
Patron N, Orzaez D, Marillonnet S, Warzecha H, Matthewman C, Youles M, Raitskin O, Leveau A, Farre G, Rogers C et al. 2015. Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytologist 208: 13-19.
Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J. 2012. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. Bmc Biology 10: 84.
Proost S, van Bel M, Vaneechoutte D, van de Peer Y, Inze D, Mueller-Roeber B, Vandepoele K. 2015. PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Research 43: D974-D981.
Ramage MH, Burridge H, Busse-Wicher M, Fereday G, Reynolds T, Shah DU, Wu GL, Yu L, Fleming P, Densley-Tingley D et al. 2017. The wood from the trees: The use of timber in construction. Renewable & Sustainable Energy Reviews 68: 333-359.
Rennie EA, Hansen SF, Baidoo EEK, Hadi MZ, Keasling JD, Scheller HV. 2012. Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronosyltransferases. Plant Physiology 159: 1408-1417.
Sainsbury F, Thuenemann EC, Lomonossoff GP. 2009. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnology Journal 7: 682-693.
Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annual Review of Plant Biology 61: 263-289.
Sedjo R. 2001. Biotechnology’s potential contribution to global wood supply and forest conservation. Discussion Paper 01-51. Washington, DC, USA: Resources for the Future.
Shimizu K, Hashi M, Sakurai K. 1978. Isolation from softwood xylan of oligosaccharides containint two 4-O-methyl glucuronic acid residues. Carbohydrate Research 62: 117-126.
Simmons TJ, Mortimer JC, Bernardinelli OD, Poppler AC, Brown SP, Deazevedo ER, Dupree R, Dupree P. 2016. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications 7: 13902.
Sparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1: 2019-2025.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.
Taylor EJ, Gloster TM, Turkenburg JP, Vincent F, Brzozowski AM, Dupont C, Shareck F, Centeno MSJ, Prates JAM, Puchart V et al. 2006. Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. Journal of Biological Chemistry 281: 10968-10975.
Terashima N, Kitano K, Kojima M, Yoshida M, Yamamoto H, Westermark U. 2009. Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. Journal of Wood Science 55: 409-416.
Terrett O, Dupree P. 2019. Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Current Opinion in Biotechnology 56: 97-104.
Terrett OM, Lyczakowski JJ, Yu L, Iuga D, Franks WT, Brown SP, Dupree R, Dupree P. 2019. Molecular architecture of softwood revealed by solid-state NMR. Nature Communications 10: 4978.
Timell TE, Syracuse NY. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology 1: 45-70.
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology 153: 895-905.
Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE. 2008. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. Journal of Molecular Biology 375: 1293-1305.
Watanabe T, Koshijima T. 1988. Evidence for an ester linkage between lignin and glucuronic-acid in lignin carbohydrate complexes by DDQ-oxidation. Agricultural and Biological Chemistry 52: 2953-2955.
Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ. 1998. Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydrate Research 307: 299-309.
Willför S, Sundberg A, Hemming J, Holmbom B. 2005. Polysaccharides in some industrially important softwood species. Wood Science and Technology 39: 245-257.
Willfor S, Sundberg K, Tenkanen M, Holmbom B. 2008. Spruce-derived mannans - a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydrate Polymers 72: 197-210.
Xiong GY, Cheng K, Pauly M. 2013. Xylan O-Acetylation impacts xylem development and enzymatic recalcitrance as indicated by the Arabidopsis mutant tbl29. Molecular Plant 6: 1373-1375.
Yamasaki T, Enomoto A, Kato A, Ishii T, Shimizu K. 2011. Structural unit of xylans from sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa). Journal of Wood Science 57: 76-84.
Yu L, Lyczakowski JJ, Pereira CS, Kotake T, Yu XL, Li A, Mogelsvang S, Skaf MS, Dupree P. 2018. The patterned structure of galactoglucomannan suggests it may bind to cellulose in seed mucilage. Plant Physiology 178: 1011-1026.
Grant Information:
BB/L014130/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/M015432/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/J014540/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
Contributed Indexing:
Keywords: conifers; glucuronic acid (GlcA); plant cell walls; softwood; xylan
Substance Nomenclature:
0 (Xylans)
8A5D83Q4RW (Glucuronic Acid)
Entry Date(s):
Date Created: 20210604 Date Completed: 20210812 Latest Revision: 20211006
Update Code:
20240105
DOI:
10.1111/nph.17531
PMID:
34086997
Czasopismo naukowe
Wood of coniferous trees (softwood), is a globally significant carbon sink and an important source of biomass. Despite that, little is known about the genetic basis of softwood cell wall biosynthesis. Branching of xylan, one of the main hemicelluloses in softwood secondary cell walls, with glucuronic acid (GlcA) is critical for biomass recalcitrance. Here, we investigate the decoration patterns of xylan by conifer GlucUronic acid substitution of Xylan (GUX) enzymes. Through molecular phylogenetics we identify two distinct conifer GUX clades. Using transcriptional profiling we show that the genes are preferentially expressed in secondary cell wall forming tissues. With in vitro and in planta assays we demonstrate that conifer GUX enzymes from both clades are active glucuronyltransferases. Conifer GUX enzymes from each clade have different specific activities. While members of clade one add evenly spaced GlcA branches, the members of clade two are also capable of glucuronidating two consecutive xyloses. Importantly, these types of xylan patterning are present in softwood. As xylan patterning might modulate xylan-cellulose and xylan-lignin interactions, our results further the understanding of softwood cell wall biosynthesis and provide breeding or genetic engineering targets that can be used to modify softwood properties.
(© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies