Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Annotation of snoRNA abundance across human tissues reveals complex snoRNA-host gene relationships.

Tytuł:
Annotation of snoRNA abundance across human tissues reveals complex snoRNA-host gene relationships.
Autorzy:
Fafard-Couture É; Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada.
Bergeron D; Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada.
Couture S; Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada.
Abou-Elela S; Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada. .
Scott MS; Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4 K8, Canada. .
Źródło:
Genome biology [Genome Biol] 2021 Jun 04; Vol. 22 (1), pp. 172. Date of Electronic Publication: 2021 Jun 04.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: London, UK : BioMed Central Ltd
Original Publication: London : Genome Biology Ltd., c2000-
MeSH Terms:
Molecular Sequence Annotation*
Organ Specificity/*genetics
RNA, Small Nucleolar/*metabolism
Female ; Gene Expression Regulation ; Humans ; Introns/genetics ; Male ; Models, Genetic ; RNA, Small Nucleolar/genetics ; Transcription Initiation, Genetic
References:
Genes Dev. 2014 Nov 15;28(22):2498-517. (PMID: 25403180)
RNA Biol. 2017 Sep 2;14(9):1138-1152. (PMID: 27911188)
Nucleic Acids Res. 2015 Dec 2;43(21):10474-91. (PMID: 26405199)
Cell Rep. 2013 Jun 27;3(6):2179-90. (PMID: 23791531)
Nucleic Acids Res. 2020 Mar 18;48(5):2271-2286. (PMID: 31980822)
Acta Biochim Pol. 1999;46(2):377-89. (PMID: 10547039)
Genomics. 2009 Aug;94(2):83-8. (PMID: 19446021)
Genome Res. 2002 Jun;12(6):996-1006. (PMID: 12045153)
Mol Cell. 2016 Nov 3;64(3):534-548. (PMID: 27871485)
Front Genet. 2015 Jan 26;6:2. (PMID: 25674102)
Nat Rev Genet. 2014 Nov;15(11):734-48. (PMID: 25297727)
Nucleic Acids Res. 2020 Feb 28;48(4):1627-1651. (PMID: 31828325)
Wiley Interdiscip Rev RNA. 2017 Jul;8(4):. (PMID: 28296064)
Nucleic Acids Res. 2020 Sep 4;48(15):8686-8703. (PMID: 32710630)
Nat Rev Mol Cell Biol. 2007 Mar;8(3):209-20. (PMID: 17318225)
Trends Genet. 2019 Feb;35(2):104-117. (PMID: 30563726)
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14311-6. (PMID: 11106375)
Methods Mol Biol. 2016;1415:245-62. (PMID: 27115637)
EMBO J. 2001 Jul 16;20(14):3617-22. (PMID: 11447102)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
Genome Res. 2005 Aug;15(8):1034-50. (PMID: 16024819)
Genome Biol. 2013 May 26;14(5):R45. (PMID: 23706177)
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D158-62. (PMID: 16381836)
Wiley Interdiscip Rev RNA. 2015 Jul-Aug;6(4):381-97. (PMID: 25879954)
Biochem Soc Trans. 2020 Apr 29;48(2):645-656. (PMID: 32267490)
Bioinformatics. 2012 Oct 1;28(19):2520-2. (PMID: 22908215)
RNA. 2018 Jul;24(7):950-965. (PMID: 29703781)
Curr Opin Cell Biol. 2002 Jun;14(3):319-27. (PMID: 12067654)
Nucleic Acids Res. 2015 Feb 27;43(4):2242-58. (PMID: 25653167)
Bioessays. 2017 Jun;39(6):. (PMID: 28505386)
J Biol Chem. 2020 Jun 19;295(25):8628-8635. (PMID: 32393576)
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. (PMID: 30395287)
PLoS Genet. 2006 Dec 8;2(12):e205. (PMID: 17154719)
J Biol Chem. 2015 May 1;290(18):11741-8. (PMID: 25792744)
Nucleic Acids Res. 2020 Jan 8;48(D1):D220-D225. (PMID: 31598696)
Nucleic Acids Res. 2014 Sep;42(15):10073-85. (PMID: 25074380)
Genome Res. 2003 Aug;13(8):1863-72. (PMID: 12902380)
Nat Genet. 2013 Jun;45(6):580-5. (PMID: 23715323)
Mol Cell. 2018 Oct 4;72(1):99-111.e5. (PMID: 30220559)
Wiley Interdiscip Rev RNA. 2015 Nov-Dec;6(6):651-60. (PMID: 26424453)
J Biol Chem. 2018 Aug 24;293(34):13284-13296. (PMID: 29980600)
Mol Cell. 2012 Oct 26;48(2):219-30. (PMID: 22959273)
Nucleic Acids Res. 2016 Jun 20;44(11):5068-82. (PMID: 27174936)
RNA. 2016 Apr;22(4):597-613. (PMID: 26826130)
Genome Biol. 2021 Jun 4;22(1):172. (PMID: 34088344)
PLoS Genet. 2017 May 24;13(5):e1006804. (PMID: 28542199)
Blood Adv. 2018 Jan 23;2(2):151-163. (PMID: 29365324)
Bioinformatics. 2019 Dec 1;35(23):5039-5047. (PMID: 31141144)
Nat Commun. 2020 Jan 10;11(1):168. (PMID: 31924754)
Nucleic Acids Res. 2017 Sep 6;45(15):8647-8660. (PMID: 28911119)
Semin Cell Dev Biol. 2018 Mar;75:3-12. (PMID: 28811264)
Wiley Interdiscip Rev RNA. 2015 Mar-Apr;6(2):173-89. (PMID: 25363811)
Nucleic Acids Res. 2020 Jan 8;48(D1):D118-D126. (PMID: 31713618)
Front Oncol. 2019 Jul 09;9:587. (PMID: 31338327)
Grant Information:
PJT 153171 Canada CIHR
Contributed Indexing:
Keywords: Dual-initiation promoters; Human tissues; Nonsense-mediated decay; RNA-Seq; SnoRNA; SnoRNA/host gene relationship; TGIRT-Seq; Transcriptome
Substance Nomenclature:
0 (RNA, Small Nucleolar)
Entry Date(s):
Date Created: 20210605 Date Completed: 20220120 Latest Revision: 20230920
Update Code:
20240105
PubMed Central ID:
PMC8176728
DOI:
10.1186/s13059-021-02391-2
PMID:
34088344
Czasopismo naukowe
Background: Small nucleolar RNAs (snoRNAs) are mid-size non-coding RNAs required for ribosomal RNA modification, implying a ubiquitous tissue distribution linked to ribosome synthesis. However, increasing numbers of studies identify extra-ribosomal roles of snoRNAs in modulating gene expression, suggesting more complex snoRNA abundance patterns. Therefore, there is a great need for mapping the snoRNome in different human tissues as the blueprint for snoRNA functions.
Results: We used a low structure bias RNA-Seq approach to accurately quantify snoRNAs and compare them to the entire transcriptome in seven healthy human tissues (breast, ovary, prostate, testis, skeletal muscle, liver, and brain). We identify 475 expressed snoRNAs categorized in two abundance classes that differ significantly in their function, conservation level, and correlation with their host gene: 390 snoRNAs are uniformly expressed and 85 are enriched in the brain or reproductive tissues. Most tissue-enriched snoRNAs are embedded in lncRNAs and display strong correlation of abundance with them, whereas uniformly expressed snoRNAs are mostly embedded in protein-coding host genes and are mainly non- or anticorrelated with them. Fifty-nine percent of the non-correlated or anticorrelated protein-coding host gene/snoRNA pairs feature dual-initiation promoters, compared to only 16% of the correlated non-coding host gene/snoRNA pairs.
Conclusions: Our results demonstrate that snoRNAs are not a single homogeneous group of housekeeping genes but include highly regulated tissue-enriched RNAs. Indeed, our work indicates that the architecture of snoRNA host genes varies to uncouple the host and snoRNA expressions in order to meet the different snoRNA abundance levels and functional needs of human tissues.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies