Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Shikonin ameliorates injury and inflammatory response of LPS-stimulated WI-38 cells via modulating the miR-489-3p/MAP2K1 axis.

Tytuł:
Shikonin ameliorates injury and inflammatory response of LPS-stimulated WI-38 cells via modulating the miR-489-3p/MAP2K1 axis.
Autorzy:
Wang J; Department of Pharmacy, Jiangsu Health vocational college, Nanjing 211800, Jiangsu, China.
Chen Z; Department of Outpatient, Jurong People's Hospital, Zhenjiang 212400, Jiangsu, China.
Feng X; Department of Comprehensive ICU, Luoyang Central Hospital, Luoyang 471009, Henan, China.
Yin L; Department of Comprehensive ICU, Luoyang Central Hospital, Luoyang 471009, Henan, China.
Źródło:
Environmental toxicology [Environ Toxicol] 2021 Sep; Vol. 36 (9), pp. 1775-1784. Date of Electronic Publication: 2021 Jun 05.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York, NY : John Wiley & Sons, c1999-
MeSH Terms:
MicroRNAs*/genetics
Naphthoquinones*/pharmacology
Apoptosis ; Lipopolysaccharides/toxicity
References:
Faverio P, Aliberti S, Bellelli G, et al. The management of community-acquired pneumonia in the elderly. Eur J Intern Med. 2014;25(4):312-319. doi: 10.1016/j.ejim.2013.12.001.
Wardlaw T, Salama P, Johansson EW, Mason E. Pneumonia: the leading killer of children. Lancet. 2006;368(9541):1048-1050. doi: 10.1016/s0140-6736(06)69334-3.
Cillóniz C, Torres A, Niederman M, et al. Community-acquired pneumonia related to intracellular pathogens. Intensive Care Med. 2016;42(9):1374-1386. doi: 10.1007/s00134-016-4394-4.
Mandell LA. Community-acquired pneumonia: an overview. Postgrad Med. 2015;127(6):607-615. doi: 10.1080/00325481.2015.1074030.
Mattila JT, Fine MJ, Limper AH, Murray PR, Chen BB, Lin PL. Pneumonia. Treatment and diagnosis. Ann Am Thorac Soc. 2014;11(suppl 4):S189-S2014, 92. doi: 10.1513/AnnalsATS.201401-027PL.
Watkins RR, Lemonovich TL. Diagnosis and management of community-acquired pneumonia in adults. Am Fam Physician. 2011;83(11):1299-1306.
Rojas M, Woods CR, Mora AL, Xu J, Brigham KL. Endotoxin-induced lung injury in mice: structural, functional, and biochemical responses. Am J Physiol Lung Cell Mol Physiol. 2005;288(2):L333-L341. doi: 10.1152/ajplung.00334.2004.
Dreyfuss D, Ricard JD. Acute lung injury and bacterial infection. Clin Chest Med. 2005;26(1):105-112. doi: 10.1016/j.ccm.2004.10.014.
Meng N, Zhao J, Su L, et al. A butyrolactone derivative suppressed lipopolysaccharide-induced autophagic injury through inhibiting the autoregulatory loop of p8 and p53 in vascular endothelial cells. Int J Biochem Cell Biol. 2012;44(2):311-319. doi: 10.1016/j.biocel.2011.11.001.
Tao Z, Yuan Y, Liao Q. Alleviation of lipopolysaccharides-induced acute lung injury by MiR-454. Cell Physiol Biochem. 2016;38(1):65-74. doi: 10.1159/000438609.
Zhou W, Jiang Hda G, Peng Y, Li SS. Comparative study on enantiomeric excess of main akannin/shikonin derivatives isolated from the roots of three endemic Boraginaceae plants in China. BMC. 2011;25(10):1067-1075. doi: 10.1002/bmc.1570.
Assimopoulou AN, Karapanagiotis I, Vasiliou A, Kokkini S, Papageorgiou VP. Analysis of alkannin derivatives from Alkanna species by high-performance liquid chromatography/photodiode array/mass spectrometry. BMC. 2006;20(12):1359-1374. doi: 10.1002/bmc.705.
Jie H, Weng X, Bi KJFC. Antioxidants from a Chinese medicinal herb-Lithospermum erythrorhizon 2008;106(1):2-10.
Chen X, Yang L, Oppenheim JJ, Howard MZ. Cellular pharmacology studies of shikonin derivatives. PTR. 2002;16(3):199-209. doi: 10.1002/ptr.1100.
Wang R, Yin R, Zhou W, Xu D, Li S. Shikonin and its derivatives: a patent review. Expert Opin Ther Pat. 2012;22(9):977-997. doi: 10.1517/13543776.2012.709237.
Guo C, He J, Song X, et al. Pharmacological properties and derivatives of shikonin-a review in recent years. Pharmacol Res. 2019;149:104463. doi: 10.1016/j.phrs.2019.104463.
Guo H, Sun J, Li D, et al. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother. 2019;112:108704. doi: 10.1016/j.biopha.2019.108704.
Yang J, Wang Z, Chen DL. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress. Biomed Pharmacother. 2017;93:1343-1357. doi: 10.1016/j.biopha.2017.06.086.
Andújar I, Martí-Rodrigo A, Giner RM, Ríos JL, Recio MC. Shikonin prevents early phase inflammation associated with Azoxymethane/dextran sulfate sodium-induced colon cancer and induces apoptosis in human colon cancer cells. Planta Med. 2018;84(9-10):674-683. doi: 10.1055/a-0599-1145.
Shindo S, Hosokawa Y, Hosokawa I, Ozaki K, Matsuo T. Shikonin inhibits inflammatory cytokine production in human periodontal ligament cells. Inflammation. 2016;39(3):1124-1129. doi: 10.1007/s10753-016-0344-0.
Lee CC, Wang CN, Lai YT, et al. Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma. Br J Pharmacol. 2010;161(7):1496-1511. doi: 10.1111/j.1476-5381.2010.00972.x.
Yang C, Liu P, Wang S, et al. Shikonin exerts anti-inflammatory effects in LPS-induced mastitis by inhibiting NF-κB signaling pathway. Biochem Biophys Res Commun. 2018;505(1):1-6. doi: 10.1016/j.bbrc.2018.08.198.
Zhang Y, Xu T, Pan Z, et al. Shikonin inhibits myeloid differentiation protein 2 to prevent LPS-induced acute lung injury. Br J Pharmacol. 2018;175(5):840-854. doi: 10.1111/bph.14129.
Bai D, Han A, Cong S. The effect of down-regulation of CCL5 on lipopolysaccharide-induced WI-38 fibroblast injury: a potential role for infantile pneumonia. Iran J Basic Med Sci. 2018;21(5):449-454. doi: 10.22038/ijbms.2018.27165.6640.
Zhang Y, Zhu Y, Gao G, Zhou Z. Knockdown XIST alleviates LPS-induced WI-38 cell apoptosis and inflammation injury via targeting miR-370-3p/TLR4 in acute pneumonia. Cell Biochem Funct. 2019;37(5):348-358. doi: 10.1002/cbf.3392.
Xu J, Li H, Lv Y, Zhang C, Chen Y, Yu D. Silencing XIST mitigated lipopolysaccharide (LPS)-induced inflammatory injury in human lung fibroblast WI-38 cells through modulating miR-30b-5p/CCL16 axis and TLR4/NF-κB signaling pathway. Open Life Sci. 2021;16(1):108-127. doi: 10.1515/biol-2021-0005.
Li X, Zeng X. Shikonin suppresses progression and epithelial-mesenchymal transition in hepatocellular carcinoma (HCC) cells by modulating miR-106b/SMAD7/TGF-β signaling pathway. Cell Biol Int. 2020;44(2):467-476. doi: 10.1002/cbin.11247.
Liu WL, Liu Q. Shikonin attenuates sympathetic remodeling in chronic heart failure mice via regulating miR-124. Biochem Biophys Res Commun. 2019;520(2):359-365. doi: 10.1016/j.bbrc.2019.10.038.
Liang D, Sun Y, Shen Y, et al. Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factor-kappaB signaling pathway. Int Immunopharmacol. 2013;16(4):475-480. doi: 10.1016/j.intimp.2013.04.020.
Fang X, Zhang J, Li C, Liu J, Shi Z, Zhou P. Long non-coding RNA SNHG22 facilitates the malignant phenotypes in triple-negative breast cancer via sponging miR-324-3p and upregulating SUDS3. Cancer Cell Int. 2020;20:252. doi: 10.1186/s12935-020-01321-9.
Bi Y, Zhu Y, Zhang M, et al. Effect of Shikonin on spinal cord injury in rats via regulation of HMGB1/TLR4/NF-kB signaling pathway. Cell Physiol Biochem. 2017;43(2):481-491. doi: 10.1159/000480474.
Liao PL, Lin CH, Li CH, et al. Anti-inflammatory properties of shikonin contribute to improved early-stage diabetic retinopathy. Sci Rep. 2017;7:42017-44985. doi: 10.1038/srep44985.
Zhang YY, Liu X, Zhang X, Zhang J. Shikonin improve sepsis-induced lung injury via regulation of miRNA-140-5p/TLR4-a vitro and vivo study. J Cell Biochem. 2020;121(3):2103-2117. doi: 10.1002/jcb.28199.
Hudson LD, Milberg JA, Anardi D, Maunder RJ. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151(2 pt 1):293-301. doi: 10.1164/ajrccm.151.2.7842182.
Wu H, Zhang W, Wu Z, et al. miR-29c-3p regulates DNMT3B and LATS1 methylation to inhibit tumor progression in hepatocellular carcinoma. Cell Death Dis. 2019;10(2):48. doi: 10.1038/s41419-018-1281-7.
Zhang L, Dong L, Tang Y, Li M, Zhang M. MiR-146b protects against the inflammation injury in pediatric pneumonia through MyD88/NF-κB signaling pathway. Infect Dis. 2020;52(1):23-32. doi: 10.1080/23744235.2019.1671987.
Li S, Cui W, Song Q, Zhou Y, Li J. miRNA-302e attenuates inflammation in infantile pneumonia though the RelA/BRD4/NF-κB signaling pathway. Int J Mol Med. 2019;44(1):47-56. doi: 10.3892/ijmm.2019.4194.
Fei S, Cao L, Pan L. microRNA-3941 targets IGF2 to control LPS-induced acute pneumonia in A549 cells. Mol Med Rep. 2018;17(3):4019-4026. doi: 10.3892/mmr.2017.8369.
Ci X, Ren R, Xu K, et al. Schisantherin a exhibits anti-inflammatory properties by down-regulating NF-kappaB and MAPK signaling pathways in lipopolysaccharide-treated RAW 264.7 cells. Inflammation. 2010;33(2):126-136. doi: 10.1007/s10753-009-9166-7.
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev: MMBR. 2011;75(1):50-83. doi: 10.1128/mmbr.00031-10.
Hommes DW, Peppelenbosch MP, van Deventer SJ. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut. 2003;52(1):144-151. doi: 10.1136/gut.52.1.144.
Hollenbach E, Neumann M, Vieth M, Roessner A, Malfertheiner P, Naumann M. Inhibition of p38 MAP kinase- and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. FASEB J. 2004;18(13):1550-1552. doi: 10.1096/fj.04-1642fje.
Contributed Indexing:
Keywords: MAP2K1; MAPK pathway; miR-489-3p; pneumonia
Substance Nomenclature:
0 (Lipopolysaccharides)
0 (MicroRNAs)
0 (Naphthoquinones)
3IK6592UBW (shikonin)
Entry Date(s):
Date Created: 20210605 Date Completed: 20210812 Latest Revision: 20210812
Update Code:
20240105
DOI:
10.1002/tox.23298
PMID:
34089293
Czasopismo naukowe
Pneumonia is an inflammatory disease induced by infection with different pathogens. Currently, multiple preclinical studies have revealed that shikonin, a natural naphthoquinone, can mitigate lipopolysaccharide (LPS)-induced inflammation, but its underlying mechanism in pneumonia remains unknown. This research was designed to explore the function and regulatory mechanism of shikonin in LPS-induced cell injury and inflammation in WI-38 cells. In-vitro model of pneumonia was constructed by treating WI-38 cells with LPS. Expression of miR-489-3p and MAP2K1 was tested by RT-qPCR and (or) Western blot analysis. Cell viability was examined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay. The productions of pro-inflammatory cytokines were determined by enzyme-linked immunosorbent assays. Cell apoptosis was detected by Western blot and flow cytometry analysis. In the current study, LPS induced WI-38 cell damage by inhibiting cell viability and promoting cell apoptosis and inflammation. Shikonin ameliorated LPS-induced cell injury and elevated miR-489-3p expression. LPS-induced inflammatory injury was further mitigated by upregulation of miR-489-3p. In addition, MAP2K1, the target of miR-489-3p, was upregulated by LPS. Furthermore, upregulation of MAP2K1 reversed the influence of shikonin and miR-489-3p mimics on LPS-induced cell injury and inflammation. This study revealed that shikonin protected WI-38 cells against LPS-induced cell injury and inflammatory response by regulating the miR-489-3p/MAP2K1 axis, thus affecting the progression of pneumonia.
(© 2021 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies