Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Molecular docking and toxicity assessment of spirodiclofen: protective role of lycopene.

Tytuł:
Molecular docking and toxicity assessment of spirodiclofen: protective role of lycopene.
Autorzy:
Çavuşoğlu D; Atabey Vocational School, Department of Plant and Animal Production, Isparta University of Applied Sciences, Isparta, Turkey.
Yalçin E; Faculty of Science and Art, Department of Biology, Giresun University, 28200, Giresun, Turkey.
Çavuşoğlu K; Faculty of Science and Art, Department of Biology, Giresun University, 28200, Giresun, Turkey. .
Acar A; Vocational School of Health Services, Department of Medical Services and Techniques, Giresun University, Giresun, Turkey.
Yapar K; Faculty of Medicine, Department of Pharmacology, Giresun University, Giresun, Turkey.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2021 Oct; Vol. 28 (40), pp. 57372-57385. Date of Electronic Publication: 2021 Jun 05.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Onions*
Plant Roots*
4-Butyrolactone/analogs & derivatives ; Lycopene ; Malondialdehyde ; Molecular Docking Simulation ; Spiro Compounds
References:
Acar A (2021) Therapeutic effects of royal jelly against sodium benzoate–induced toxicity: cytotoxic, genotoxic, and biochemical assessment. Environ Sci Pollut Res:1–16. https://doi.org/10.1007/s11356-021-13172-6.
Agsamova GS (2014) HLA typing and chromosomal aberrations caused by chemical agents. Int J Biomed 4:20–22.
Ateşşahin A, Karahan I, Türk G, Gür S, Yılmaz S, Çeribaşı AO (2006) Protective role of lycopene on cisplatin-induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Reprod Toxicol 21:42–47. https://doi.org/10.1016/j.reprotox.2005.05.003. (PMID: 10.1016/j.reprotox.2005.05.003)
Atik M, Karagüzel O, Ersoy S (2007) Effect of temperature on germination characteristics of Dalbergia sissoo seeds. Mediterr Agric Sci 20:203–210.
Banci L, Benedetto M, Bertini I, Del Conte R, Piccioli M, Viezzoli MS (1998) Solution structure of reduced monomeric Q133M2 copper, zinc superoxide dismutase (SOD). Why is SOD a dimeric enzyme? Biochemistry 37:11780–11791. https://doi.org/10.1021/bi9803473. (PMID: 10.1021/bi9803473)
Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. https://doi.org/10.1016/0003-2697(71)90370-8. (PMID: 10.1016/0003-2697(71)90370-8)
Beers RF, Sizer IW (1952) Colorimetric method for estimation of catalase. J Biol Chem 195:133–139. (PMID: 10.1016/S0021-9258(19)50881-X)
Bıçakcı U, Çavuşoğlu K, Yapar K, Acar A, Yalçın E (2017) The investigation of diazinon toxicity in root tip cells of Allium cepa (Onion). Iğdır Univ J Inst Sci Tech 7:49–56. (PMID: 10.21597/jist.2017.161)
Çavuşoğlu K, Yalçın E (2009) Radioprotective effect of lycopene on chromosomal aberrations (CAs) induced by gamma radiation in human lymphocytes. J Environ Biol 30:113–117.
Çavușoğlu K, Yalcin E, Șengül B, Șengül Ü (2009) Protective role of lycopene on refinery wastewater-induced cytotoxicity in maize root tip cells. Fresenius Environ Bull 18:1779–1787.
Çavuşoğlu K, Kaya A, Yilmaz F, Yalçin E (2012) Effects of cypermethrin on Allium cepa. Environ Toxicol 27:583–589. https://doi.org/10.1002/tox.20681. (PMID: 10.1002/tox.20681)
Çavuşoğlu K, Gür B, Yalçin E, Demirtaş G, Çiçek F (2014) The effect of lambda-cyhalothrin on root tip cytology, pigment contents and antioxidant defense system of Allium cepa. Cytologia 79:95–101. https://doi.org/10.1508/cytologia.79.95. (PMID: 10.1508/cytologia.79.95)
Chakraborty R, Mukherjee AK, Mukherjee A (2009) Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test. Environ Monit Assess 153:351–357. https://doi.org/10.1007/s10661-008-0361-z. (PMID: 10.1007/s10661-008-0361-z)
Cortés-Eslava J, Gómez-Arroyo S, Risueño MC, Testillano PS (2018) The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models. Environ Pollut 240:77–86. https://doi.org/10.1016/j.envpol.2018.04.119. (PMID: 10.1016/j.envpol.2018.04.119)
Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1318. https://doi.org/10.1161/CIRCRESAHA.108.173989. (PMID: 10.1161/CIRCRESAHA.108.173989)
Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17:626–638. https://doi.org/10.1016/j.devcel.2009.10.016. (PMID: 10.1016/j.devcel.2009.10.016)
Food and Agriculture Organization (FAO).(2019) Pesticides-Spirodiklofen Report No: 09. Available at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report09/Spirodiclofen.pdf . Retrieved May 15, 2019.
Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75. https://doi.org/10.1016/S1383-5718(02)00249-8. (PMID: 10.1016/S1383-5718(02)00249-8)
Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2008-0226-01.
Güç İ, Çavuşoğlu K, Yalcin E (2019) Toxicity induced by ridomil in Allium cepa: physiological, cytogenetic, biochemical and anatomical approach. GBAD 8(2):85–97.
Guex N, Peitsch MC (2005) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. https://doi.org/10.1002/elps.1150181505. (PMID: 10.1002/elps.1150181505)
Kara Ö, Baş H, Pandır D (2016) Furan toxicity on testes and protective role of lycopene in diabetic rats. J Turk Ger Gynecol Assoc 17:191–196. https://doi.org/10.5152/jtgga.2016.16144. (PMID: 10.5152/jtgga.2016.16144)
Karabulut H, Gülay MŞ (2016) Antioxidants. Mehmet Akif Ersoy Univ J Vet Fac 1:65–76.
Kayhan FE, Kaymak G, Yön ND (2013) Insecticide groups and their effects in aquatic environment. Marmara J Sci 25:167–183.
Köksoy S, Beytut E (2018) The protective role of lycopene against oxidative damage in the liver, heart and kidney tissues of mice exposed to CoCl 2 . Int J Disabil Sports Health Sci 1:24–31.
Końca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Góźdź S, Koza Z, Wojcik A (2003) A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res 534:15–20. https://doi.org/10.1016/s1383-5718(02)00251-6. (PMID: 10.1016/s1383-5718(02)00251-6)
Krishnamoorthy G, Selvakumar K, Elumalai P, Venkataraman P, Arunakaran J (2011) Protective role of lycopene on polychlorinated biphenyls (Aroclor 1254)-induced adult rat Sertoli cell dysfunction by increased oxidative stress and endocrine disruption. Biomed Prev Nutr 1:116–125. https://doi.org/10.1016/j.bionut.2011.03.001. (PMID: 10.1016/j.bionut.2011.03.001)
Kutluer F, Çavuşoğlu K, Yalçın E (2019) The investigation of the physiological, anatomical and genotoxic effects in Allium cepa of deltamethrin. Düzce Unv J Sci Technol 7:961–972.
Lushchak VL, Matviishyn TM, Husak VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. EXCLI J 17:1101–1136. https://doi.org/10.17179/excli2018-1710. (PMID: 10.17179/excli2018-1710)
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. Aust J Chem 3:33. https://doi.org/10.1186/1758-2946-3-33. (PMID: 10.1186/1758-2946-3-33)
Sahin K, Gencoglu H, Bilir B, Kucuk O (2018) Protective role of lycopene against oxidative stress in liver. In (eds Patel VB, Rajendram R, Preedy VR) The liver. San Diego Academic Press 2018:155–167. https://doi.org/10.1016/B978-0-12-803951-9.00014-8. (PMID: 10.1016/B978-0-12-803951-9.00014-8)
Spiers JD, Davies T, He C, Heinz KM, Bogran CE, Starman TW (2008) Do insecticide affect plant growth and development. Greenh Grow 2:1–4.
Staykova TA, Ivanova EN, Velcheva IG (2005) Cytogenetic effect of heavy metal and cyanide in contaminated waters from the region of Southwest Bulgaria. J Mol Cell Biol 4:41–46.
Tamilselvan P, Bharathiraja K, Vijayaprakash S, Balasubramanian MP (2013) Protective role of lycopene on bisphenol A induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Int J Pharm Bio Sci 4:131–143.
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334. (PMID: 10.1002/jcc.21334)
Tütüncü E, Yalçin E, Acar A, Yapar K, Çavuşoğlu K (2019) Investigation of the toxic effects of a carbamate insecticide methiocarb in Allium cepa L. Cytologia 84:113–117. https://doi.org/10.1508/cytologia.84.113. (PMID: 10.1508/cytologia.84.113)
Unyayar S, Celik A, Cekic FO, Gozel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21(1):77–81. https://doi.org/10.1093/mutage/gel001. (PMID: 10.1093/mutage/gel001)
Yonekura K, Maki-Yonekura S (2016) Refinement of cryo-EM structures using scattering factors of charged atoms. J Appl Crystallogr 49:1517–1523. https://doi.org/10.1107/S1600576716011274. (PMID: 10.1107/S1600576716011274)
Zou J, Yue J, Jiang W, Liu D (2012) Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var. agrogarum L. Acta Biol Cracov Ser Bot 54:129–141. https://doi.org/10.2478/v10182-012-0015-x. (PMID: 10.2478/v10182-012-0015-x)
Contributed Indexing:
Keywords: Antioxidant enzymes; Comet assay; Genotoxicity; Lipid peroxidation; Lycopene; Molecular docking; Spirodiclofen
Substance Nomenclature:
0 (Spiro Compounds)
3X7G31F5MX (spirodiclofen)
4Y8F71G49Q (Malondialdehyde)
OL659KIY4X (4-Butyrolactone)
SB0N2N0WV6 (Lycopene)
Entry Date(s):
Date Created: 20210606 Date Completed: 20211012 Latest Revision: 20211012
Update Code:
20240105
DOI:
10.1007/s11356-021-14748-y
PMID:
34091852
Czasopismo naukowe
In this study, toxic effects of spirodiclofen and protective role of lycopene against toxic effects were investigated by using physiological, cytogenetic, anatomical, and biochemical parameters. Allium cepa L. bulbs were used as test material. The bulbs were divided into six groups as one control and five application groups. Bulb in the control group was germinated with tap water, and in treatment groups, 20-mg L -1 dose of spirodiclofen 215- and 430-mg L -1 doses of lycopene were applied. Spirodiclofen application caused a decrease in physiological parameters such as germination percentage, root length, and weight increase. Spirodiclofen administration caused a decrease in the percentage of mitotic index (MI) and an increase in DNA fragmentation, micronucleus (MN), and chromosomal aberration (CA) frequency. Spirodiclofen application caused an increase in the level of the oxidant compound malondialdehyde (MDA), changes in the level of antioxidant enzymes, and disruption of the oxidant/antioxidant balance in the cell. Molecular interactions between spirodiclofen and antioxidant enzymes were determined by molecular docking analysis. In addition to physiological, biochemical, and genetic abnormalities, spirodiclofen also caused deformations in the anatomy of the A. cepa root tip meristematic cells. Lycopene treatment showed a protective effect by suppressing the toxic effects of spirodiclofen, causing a significant improvement in the values of selected physiological, cytogenetic, anatomical, and biochemical parameters. As a result, spirodiclofen insecticide caused toxic effects on various parameters in A. cepa, which is a eukaryotic model organism. In order to elucidate the toxicity mechanism, each parameter is associated with each other. Molecular docking method has revealed the effects of spirodiclofen on antioxidant enzymes. Lycopene application together with spirodiclofen resulted in the regression of all toxic effects and improvement in the root tissue. This result shows that lycopene has a strong protective property against spirodiclofen toxicity.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies