Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Directed Evolution Improves the Enzymatic Synthesis of L-5-Hydroxytryptophan by an Engineered Tryptophan Synthase.

Directed Evolution Improves the Enzymatic Synthesis of L-5-Hydroxytryptophan by an Engineered Tryptophan Synthase.
Xu L; School of Biological and Food Engineering, Suzhou University, Suzhou, 234000, China. .
Li T; School of Biological and Food Engineering, Suzhou University, Suzhou, 234000, China.
Huo Z; School of Biological and Food Engineering, Suzhou University, Suzhou, 234000, China.
Chen Q; School of Biological and Food Engineering, Suzhou University, Suzhou, 234000, China.
Xia Q; School of Biological and Food Engineering, Suzhou University, Suzhou, 234000, China.
Jiang B; School of Biological and Food Engineering, Suzhou University, Suzhou, 234000, China.
Applied biochemistry and biotechnology [Appl Biochem Biotechnol] 2021 Oct; Vol. 193 (10), pp. 3407-3417. Date of Electronic Publication: 2021 Jun 07.
Typ publikacji:
Journal Article
Imprint Name(s):
Original Publication: Clifton, N.J. : Humana Press, c1981-
MeSH Terms:
Tryptophan Synthase*
5-Hydroxytryptophan ; Escherichia coli ; Tryptophan
Horvath, G. A., Meisner, L., Selby, K., Stowe, R., & Carleton, B. (2017). Improved strength on 5-hydroxytryptophan and carbidopa in spinal cord atrophy. Journal of Neurological Sciences, 378, 59–62. (PMID: 10.1016/j.jns.2017.04.047)
Gendle, M. H., Young, E. L., & Romano, A. C. (2013). Effects of oral 5-hydroxytryptophan on a standardized planning task: Insight into possible dopamine/serotonin interactions in the forebrain. Human Psychopharmacology: Clinical and Experimental, 28(3), 270–273. (PMID: 10.1002/hup.2314)
Jangid, P., Malik, P., Singh, P., Sharma, M., & Gulia, A. D. (2013). Comparative study of efficacy of L-5-hydroxytryptophan and fluoxetine in patients presenting with first depressive episode. Asian Journal of Psychiatry, 6(1), 29–34. (PMID: 10.1016/j.ajp.2012.05.011)
Ohgi, Y., Futamura, T., Tetsuro, K., & Kenji, H. (2013). Effects of antidepressants on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacology, Biochemistry, and Behavior, 103(4), 853–859. (PMID: 10.1016/j.pbb.2012.12.003)
Feng, J. (2013). Isolation and purification of 5-hydroxytryptophan in extract from seeds of Griffonia simplicifolia by ion-exchange resin. Chinese Traditional and Herbal Drugs, 44, 2410–2416.
Ye, L., Hu, Z., Du, G., Zhang, J., Dong, Q., Fu, F., & Tian, J. (2012). Antidepressant-like effects of the extract from Cimicifuga foetida L. Journal of Ethnopharmacology, 144(3), 683–691. (PMID: 10.1016/j.jep.2012.10.013)
Wang, H., Liu, W., Shi, F., Huang, L., Lian, J., Qu, L., Cai, J., & Xu, Z. (2018). Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli. Metabolic Engineering, 48, 279–287. (PMID: 29933064)
Xu, D., Fang, M. J., Wang, H. J., Huang, L., Xu, Q. Y., & Xu, Z. N. (2020). Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway. Applied Microbiology and Biotechnology, 104(6), 2481–2488. (PMID: 10.1007/s00253-020-10371-y)
Vasilescu, C., Todea, A., Nan, A., Circu, M., Turcu, R., Benea, I.-C., & Peter, F. (2019). Enzymatic synthesis of short-chain flavor esters from natural sources using tailored magnetic biocatalysts. Food Chemistry, 296, 1–8. (PMID: 10.1016/j.foodchem.2019.05.179)
Wang, H. Q., Jia, C. S., Xia, X., Karangwa, E., & Zhang, X. M. (2018). Enzymatic synthesis of phytosteryl lipoate and its antioxidant properties. Food Chemistry, 240, 736–742. (PMID: 10.1016/j.foodchem.2017.08.025)
Zhang, S. Y., & Akoh, C. C. (2020). Enzymatic synthesis of L-o-galloylglycerol: Characterization and determination of its antioxidant properties. Food Chemistry, 305, 1–9. (PMID: 10.1016/j.foodchem.2019.125479)
Xu, G., Zhao, Q., Huang, B., Zhou, J. H., & Cao, F. X. (2018). Directed evolution of a penicillin V acylase from Bacillus sphaericus to improve its catalytic efficiency for 6-APA production. Enzyme Microbial Technology, 119, 65–70. (PMID: 10.1016/j.enzmictec.2018.08.006)
Zhu, L., Wu, Z., Jin, J.-M., & Tang, S.-Y. (2016). Directed evolution of leucine dehydrogenase for improved efficiency of L-tert-leucine synthesis. Applied Microbiology and Biotechnology, 100(13), 5805–5813. (PMID: 10.1007/s00253-016-7371-5)
Han, H. W., Ling, Z. M., Khan, A., Virk, A. K., Kulshrestha, S., & Li, X. K. (2019). Improvements of thermophilic enzymes: From genetic modifications to applications. Bioresource Technology, 279, 350–361. (PMID: 10.1016/j.biortech.2019.01.087)
Tian, K. Y., Tai, K., Chua, B. J. W., & Li, Z. (2017). Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease. Bioresource Technology, 245(Pt B), 1491–1497. (PMID: 10.1016/j.biortech.2017.05.108)
Zhang, Z. G., Yi, Z. L., Pei, X. Q., & Wu, Z. L. (2010). Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Bioresource Technology, 101(23), 9272–9278. (PMID: 10.1016/j.biortech.2010.07.060.20691586)
Chen, Z. M., Ma, Y. H., He, M. Y., Ren, H. Y., Zhou, S., Lai, D. Y., Wang, Z. G., & Jiang, L. S. (2015). Semi-rational directed evolution of monoamine oxidase for kinetic resolution of rac-mexiletine. Applied Biochemistry and Biotechnology, 176(8), 2267–2278. (PMID: 10.1007/s12010-015-1716-x)
Luo, H., Ma, J. W., Chang, Y. H., Yu, H. M., & Shen, Z. Y. (2016). Directed evolution and mutant characterization of nitrilase from Rhodococcus rhodochrous tg1-A6. Applied Biochemistry and Biotechnology, 178(8), 1510–1521. (PMID: 10.1007/s12010-015-1964-9)
Chen, Y. Q., Zhang, B., Pei, H. L., Lv, J. N., Yang, W. H., Cao, Y. H., & Dong, B. (2012). Directed evolution of Penicillium janczewskii zalesk α-galactosidase toward enhanced activity and expression in Pichia pastoris. Applied Biochemistry and Biotechnology, 168(3), 638–650. (PMID: 10.1007/s12010-012-9806-5)
Xu, L. S., Wang, Z. Y., Mao, P. T., Liu, J. Z., Zhang, H. J., Liu, Q., & Jiao, Q. C. (2013). Enzymatic synthesis of S-phenyl-L-cysteine from keratin hydrolysis industries wastewater with tryptophan synthase. Bioresource Technology, 133, 635–637. (PMID: 10.1016/j.biortech.2013.02.011)
Xu, L. S., Zhang, X. T., Gao, G. Z., & Yue, S. (2019). Highly efficient preparation of active S-phenyl-L-cysteine with tryptophan synthase using a chemoenzymatic method. BMC Biotechnology, 19, 1–8. (PMID: 10.1186/s12896-019-0538-2)
Zhao, G. H., Liu, J. Z., Dong, K., Zhang, F., Zhang, H. J., Liu, Q., & Jiao, Q. C. (2011). Enzymatic synthesis of L-tryptophan from hair acid hydrolysis industries wastewater with tryptophan synthase. Bioresource Technology, 102(3), 3554–3557. (PMID: 10.1016/j.biortech.2010.09.019)
Mu, D., Lu, J., Shu, C., Li, H., Li, X., Cai, J., Luo, S., Yang, P., Jiang, S., & Zheng, Z. (2018). Improvement of the activity and thermostability of microbial transglutaminase by multiple-site mutagenesis. Bioscience Biotechnology and Biochemistry, 82(1), 106–109. (PMID: 10.1080/09168451.2017.1403881)
Nishio, K., Ogasahara, K., Morimoto, Y., Tsukihara, T., Lee, S. J., & Yutani, K. (2010). Large conformational changes in the Escherichia coli tryptophan synthase beta(2) subunit upon pyridoxal 5'-phosphate binding. The FEBS Journal, 277(9), 2157–2170. (PMID: 10.1111/j.1742-4658.2010.07631.x)
Bornscheuer, U. T., & Pohl, M. (2001). Improved biocatalysts by directed evolution and rational protein design. Current Opinion in Chemical Biology, 5(25), 137–143. (PMID: 10.1016/S1367-5931(00)00182-4)
Dierkers, A. T., Niks, D., Schlichting, I., & Dunn, M. F. (2009). Tryptophan synthase: Structure and function of the monovalent cation site. Biochemistry, 48, 10997–11010. (PMID: 10.1021/bi9008374)
Watkins-Dulaney, E. J., Straathof, S., & Arnold, F. H. (2020). Tryptophan synthase: Biocatalyst extraordinaire. ChemBioChem, 22, 1–12.
Lai, J. F., Niks, D., Wang, Y. C., Domratcheva, T., Barends, T. R. M., Schwarz, F., Olsen, R. A., Elliott, D. W., Fatmi, M. Q., Chang, C. A., Schlichting, I., Dunn, M. F., & Mueller, L. J. (2011). X-Ray and NMR crystallography in an enzyme active site: The indoline quinonoid intermediate in tryptophan synthase. Journal of the American Chemical Society, 133(1), 4–7. (PMID: 10.1021/ja106555c)
Evran, S., Telefoncu, A., & Sterner, R. (2012). Directed evolution of (βα) 8 -barrel enzymes: Establishing phosphoribosylanthranilate isomerisation activity on the scaffold of the tryptophan synthase a-subunit. Protein Engineering Design and Selection, 25(6), 285–293. (PMID: 10.1093/protein/gzs015)
Buller, A. R., Roye, P., Cahn, J. K. B., Scheele, R. A., Herger, M., & Arnold, F. H. (2018). Directed evolution mimics allosteric activation by stepwise tuning of the conformational ensemble. Journal of the American Chemical Society, 140(23), 7256–7266. (PMID: 10.1021/jacs.8b03490)
Herger, M., Roye, P. V., Romney, D. K., Brinkmann-Chen, S., Buller, A. R., & Arnold, F. H. (2016). Synthesis of β-branched tryptophan analogues using an engineered subunit of tryptophan synthase. Journal of the American Chemical Society, 138(27), 8388–8391. (PMID: 10.1021/jacs.6b04836)
Boville, C. E., Scheele, R. A., Koch, P., Brinkmann-Chen, S., Buller, A. R., & Arnold, F. H. Engineered biosynthesis of β-alkyl tryptophan analogs. Angewandte Chemie International Edition, 57(45), 14764–14768.
Smith, D. R. M., Willemse, T., Gkotsi, D. S., Schepens, W., Maes, B. U. W., Ballet, S., & Goss, R. J. M. (2014). The first one-pot synthesis of L-7-iodotryptophan from 7-iodoindole and serine, and an improved synthesis of other L-7-halotryptophans. Organic Letters, 16(10), 2622–2625. (PMID: 10.1021/ol5007746)
Grant Information:
(KJ2020A0729) Innovative Research Group Project of the National Natural Science Foundation of China (CN)
Contributed Indexing:
Keywords: Directed evolution; L-5-Hydroxytryptophan; Synthase; Tryptophan
Substance Nomenclature:
8DUH1N11BX (Tryptophan)
C1LJO185Q9 (5-Hydroxytryptophan)
EC (Tryptophan Synthase)
Entry Date(s):
Date Created: 20210607 Date Completed: 20211230 Latest Revision: 20211230
Update Code:
Czasopismo naukowe
L-5-Hydroxytryptophan is an important amino acid that is widely used in food and medicine. In this study, L-5-hydroxytryptophan was synthesized by a modified tryptophan synthase. A direct evolution strategy was applied to engineer tryptophan synthase from Escherichia coli to improve the efficiency of L-5-hydroxytryptophan synthesis. Tryptophan synthase was modified by error-prone PCR. A high-activity mutant enzyme (V231A/K382G) was obtained by a high-throughput screening method. The activity of mutant enzyme (V231A/K382G) is 3.79 times higher than that of its parent, and k cat /K m of the mutant enzyme (V231A/K382G) is 4.36 mM -1 ∙s -1 . The mutant enzyme (V231A/K382G) reaction conditions for the production of L-5-hydroxytryptophan were 100 mmol/L L-serine at pH 8.5 and 35°C for 15 h, reaching a yield of L-5-hydroxytryptophan of 86.7%. Directed evolution is an effective strategy to increase the activity of tryptophan synthase.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies