Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes.

Tytuł:
Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes.
Autorzy:
Mansouri M; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Hussherr MD; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Strittmatter T; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Buchmann P; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Xue S; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Camenisch G; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Fussenegger M; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .; Faculty of Science, University of Basel, Basel, Switzerland. .
Źródło:
Nature communications [Nat Commun] 2021 Jun 07; Vol. 12 (1), pp. 3388. Date of Electronic Publication: 2021 Jun 07.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Bacterial Proteins/*radiation effects
Diabetes Mellitus, Type 2/*therapy
Glucagon-Like Peptide 1/*therapeutic use
Optogenetics/*methods
Trans-Activators/*radiation effects
Animals ; Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; Cell Engineering ; Diabetes Mellitus, Type 2/genetics ; Female ; Genetic Engineering ; Glucagon-Like Peptide 1/genetics ; Glucagon-Like Peptide 1/metabolism ; HEK293 Cells ; Humans ; Light ; Male ; Mesenchymal Stem Cells ; Mice ; Mice, Obese ; Optogenetics/instrumentation ; Photoplethysmography/instrumentation ; Protein Domains/genetics ; Recombinant Fusion Proteins/genetics ; Recombinant Fusion Proteins/metabolism ; Recombinant Fusion Proteins/radiation effects ; Thermus thermophilus/genetics ; Trans-Activators/genetics ; Trans-Activators/metabolism ; Transgenes ; Wearable Electronic Devices
References:
Ausländer, S. & Fussenegger, M. From gene switches to mammalian designer cells: present and future prospects. Trends Biotechnol. 31, 155–168 (2013). (PMID: 2324572810.1016/j.tibtech.2012.11.006)
Saez, E., No, D., West, A. & Evans, R. M. Inducible gene expression in mammalian cells and transgenic mice. Curr. Opin. Biotechnol. 8, 608–616 (1997). (PMID: 935323310.1016/S0958-1669(97)80037-7)
Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164, 780–791 (2016). (PMID: 26830878475286610.1016/j.cell.2016.01.012)
Xie, M. & Fussenegger, M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018). (PMID: 2985860610.1038/s41580-018-0024-z)
Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005). (PMID: 1611644710.1038/nn1525)
Chow, B. Y. & Boyden, E. S. Optogenetics and Translational Medicine. Sci. Transl. Med. 5, 177ps5–177ps5 (2013). (PMID: 2351507510.1126/scitranslmed.3003101)
Huang, Z. et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci. Adv. 6, eaay9209 (2020). (PMID: 32128416703092810.1126/sciadv.aay9209)
Kim, T., Folcher, M., Baba, M. D.-E. & Fussenegger, M. A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection. Angew. Chem. Int. Ed. 54, 5933–5938 (2015). (PMID: 10.1002/anie.201412204)
Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 9, eaal2298 (2017). (PMID: 2844668210.1126/scitranslmed.aal2298)
Ye, H., Baba, M. D. E. L., Peng, R. W. & Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565–1568 (2011). (PMID: 2170087610.1126/science.1203535)
Kolar, K., Knobloch, C., Stork, H., Žnidarič, M. & Weber, W. OptoBase: a web platform for molecular optogenetics. ACS Synth. Biol. 7, 1825–1828 (2018). (PMID: 2991306510.1021/acssynbio.8b00120)
Waldchen, S., Lehmann, J., Klein, T., Van De Linde, S. & Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 5, 15348 (2015).
Stockley, J. H. et al. Surpassing light-induced cell damage in vitro with novel cell culture media. Sci. Rep. 7, 1–11 (2017). (PMID: 10.1038/s41598-017-00829-x)
Ruggiero, E., Alonso-De Castro, S., Habtemariam, A. & Salassa, L. Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry. Dalt. Trans. 45, 13012–13020 (2016). (PMID: 10.1039/C6DT01428C)
Tyssowski, K. M. & Gray, J. M. Blue light increases neuronal activity-regulated gene expression in the absence of optogenetic proteins. eNeuro 6 (2019).
Müller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013). (PMID: 23355611362756210.1093/nar/gkt002)
Padmanabhan, S., Jost, M., Drennan, C. L. & Elías-Arnanz, M. A new facet of vitamin B 12 : gene regulation by cobalamin-based photoreceptors. Annu. Rev. Biochem. 86, 485–514 (2017). (PMID: 28654327715395210.1146/annurev-biochem-061516-044500)
Kainrath, S., Stadler, M., Reichhart, E., Distel, M. & Janovjak, H. Green-light-induced inactivation of receptor signaling using cobalamin-binding domains. Angew. Chem. Int. Ed. Engl. 56, 4608–4611 (2017).
Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995). (PMID: 779260310.1126/science.7792603)
Chatelle, C. et al. A green-light-responsive system for the control of transgene expression in mammalian and plant cells. ACS Synth. Biol. 7, 1349–1358 (2018). (PMID: 2963424210.1021/acssynbio.7b00450)
Raja, J. M. et al. Apple Watch, wearables, and heart rhythm: where do we stand? Ann. Transl. Med. 7, 417–417 (2019). (PMID: 31660316678739210.21037/atm.2019.06.79)
Turakhia, M. P. et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: the Apple Heart Study. Am. Heart J. 207, 66–75 (2019). (PMID: 3039258410.1016/j.ahj.2018.09.002)
Perez, M. V. et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N. Engl. J. Med. 381, 1909–1917 (2019). (PMID: 31722151811260510.1056/NEJMoa1901183)
Lee, J. et al. Comparison between red, greenx and blue light reflection photoplethysmography for heart rate monitoring during motion. in Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 1724–1727, https://doi.org/10.1109/EMBC.2013.6609852 (2013).
Sim, I. Mobile devices and health. N. Engl. J. Med. 381, 956–968 (2019). (PMID: 3148396610.1056/NEJMra1806949)
Alpert, J. M. et al. Secondary care provider attitudes towards patient generated health data from smartwatches. npj Digit. Med. 3, 1–7 (2020). (PMID: 10.1038/s41746-020-0236-4)
Padmanabhan, S., Pérez-Castaño, R. & Elías-Arnanz, M. B12 -based photoreceptors: from structure and function to applications in optogenetics and synthetic biology. Curr. Opin. Struct. Biol. 57, 47–55 (2019). (PMID: 3085157810.1016/j.sbi.2019.01.020)
Jost, M. et al. Structural basis for gene regulation by a B12-dependent photoreceptor. Nature 526, 536–541 (2015). (PMID: 26416754463493710.1038/nature14950)
Redchuk, T. A., Omelina, E. S., Chernov, K. G. & Verkhusha, V. V. Near-infrared optogenetic pair for protein regulation and spectral multiplexing. Nat. Chem. Biol. 13, 633–639 (2017). (PMID: 28346403623986210.1038/nchembio.2343)
Bojar, D. et al. Caffeine-inducible gene switches controlling experimental diabetes. Nat. Commun. 9, 1–10 (2018). (PMID: 10.1038/s41467-018-04744-1)
Müller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019). (PMID: 31767182681241010.1016/j.molmet.2019.09.010)
Xie, M. et al. β-cell-mimetic designer cells provide closed-loop glycemic control. Science 354, 1296–1301 (2016). (PMID: 2794087510.1126/science.aaf4006)
Xue, S. et al. A synthetic-biology-inspired therapeutic strategy for targeting and treating hepatogenous diabetes. Mol. Ther. 25, 443–455 (2017). (PMID: 28153094536840110.1016/j.ymthe.2016.11.008)
Yin, J. et al. A green tea-triggered genetic control system for treating diabetes in mice and monkeys. Sci. Transl. Med. 11, eaav8826 (2019).
Arsand, E., Muzny, M., Bradway, M., Muzik, J. & Hartvigsen, G. Performance of the first combined smartwatch and smartphone diabetes diary application study. J. Diabetes Sci. Technol. 9, 556–563 (2015). (PMID: 25591859460452410.1177/1932296814567708)
Moravec, C. S. & Mckee, M. G. Biofeedback in the treatment of heart disease. Cleve. Clin. J. Med. 78, S20–S23 (2011).
Frank, D. L., Khorshid, L., Kiffer, J. F., Moravec, C. S. & McKee, M. G. Biofeedback in medicine: who, when, why and how? Ment. Health Fam. Med. 7, 85–91 (2010). (PMID: 224779262939454)
Goecks, J., Jalili, V., Heiser, L. M. & Gray, J. W. How machine learning will transform biomedicine. Cell 181, 92–101 (2020). (PMID: 32243801714141010.1016/j.cell.2020.03.022)
Sahoo, P. K., Thakkar, H. K. & Lee, M. Y. A cardiac early warning system with multi channel SCG and ECG monitoring for mobile health. Sensors 17, 711 (2017).
Tison, G. H. et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. 3, 409–416 (2018). (PMID: 29562087587539010.1001/jamacardio.2018.0136)
Bumgarner, J. M. et al. Smartwatch algorithm for automated detection of atrial fibrillation. J. Am. Coll. Cardiol. 71, 2381–2388 (2018). (PMID: 2953506510.1016/j.jacc.2018.03.003)
Kim, J., Campbell, A. S., de Ávila, B. E. F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019). (PMID: 3080453410.1038/s41587-019-0045-y8183422)
Baron, K. G. et al. Feeling validated yet? A scoping review of the use of consumer-targeted wearable and mobile technology to measure and improve sleep. Sleep. Med. Rev. 40, 151–159 (2018). (PMID: 2939598510.1016/j.smrv.2017.12.002)
de Zambotti, M., Rosas, L., Colrain, I. M. & Baker, F. C. The sleep of the ring: comparison of the ŌURA sleep tracker against polysomnography. Behav. Sleep. Med. 17, 124–136 (2019). (PMID: 2832345510.1080/15402002.2017.1300587)
Peake, J. M., Kerr, G. & Sullivan, J. P. A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Front. Physiol. 9, 743 (2018). (PMID: 30002629603174610.3389/fphys.2018.00743)
Imani, S. et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).
Alexeev, V. L., Das, S., Finegold, D. N. & Asher, S. A. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 50, 2353–2360 (2004). (PMID: 1545909310.1373/clinchem.2004.039701)
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). (PMID: 26819044499607910.1038/nature16521)
Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015). (PMID: 2549637610.1021/ac504300n)
Khan, H., Ikram, M., Khan, I., Ahmad, M. & Awais, M. Internet of things in smart healthcare systems. Int. J. Sci. Res. Si. Eng. Technol. 4, 367–376 (2018).
Geng, Z., Tang, F., DIng, Y., Li, S. & Wang, X. Noninvasive continuous glucose monitoring using a multisensor-based glucometer and time series analysis. Sci. Rep. 7, 1–10 (2017). (PMID: 10.1038/s41598-017-13018-7)
Caduff, A. et al. First experiences with a wearable multisensor in an outpatient glucose monitoring study, part I: the users’ view. J. Diabetes Sci. Technol. 12, 562–568 (2018). (PMID: 29332423615423510.1177/1932296817750932)
Zanon, M. et al. First experiences with a wearable multisensor device in a noninvasive continuous glucose monitoring study at home, part II: the investigators’ view. J. Diabetes Sci. Technol. 12, 554–561 (2018). (PMID: 2914574910.1177/1932296817740591)
Folcher, M. et al. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat. Commun. 5, 5392 (2014).
Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. 368, 993–1001 (2020).
Welsh, J. B. et al. Accuracy, utilization, and effectiveness comparisons of different continuous glucose monitoring systems. Diabetes Technol. Ther. 21, 128–132 (2019). (PMID: 30681379643458310.1089/dia.2018.0374)
Hanna, J. et al. Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy. Sci. Adv. 6, 5320–5330 (2020). (PMID: 10.1126/sciadv.aba5320)
Rössger, K., Charpin-El-Hamri, G. & Fussenegger, M. A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat. Commun. 4, 1–9 (2013). (PMID: 10.1038/ncomms3825)
Ye, H. et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng. 1, 0005 (2017).
Kemmer, C. et al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol. 28, 355–360 (2010). (PMID: 2035168810.1038/nbt.1617)
Sedlmayer, F., Jaeger, T., Jenal, U. & Fussenegger, M. Quorum-quenching human designer cells for closed-loop control of Pseudomonas aeruginosa biofilms. Nano Lett. 17, 5043–5050 (2017). (PMID: 2870359510.1021/acs.nanolett.7b02270)
Liu, Y. et al. Immunomimetic designer cells protect mice from MRSA infection. Cell 174, 259–270.e11 (2018). (PMID: 29937224605727310.1016/j.cell.2018.05.039)
Ashimova, A., Yegorov, S., Negmetzhanov, B. & Hortelano, G. Cell encapsulation within alginate microcapsules: immunological challenges and outlook. Front. Bioeng. Biotechnol. 7, 380 (2019).
Alagpulinsa, D. A. et al. Alginate-microencapsulation of human stem cell–derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am. J. Transplant. 19, 1930–1940 (2019). (PMID: 3074809410.1111/ajt.15308)
Brown, S. A. et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N. Engl. J. Med. 381, 1707–1717 (2019). (PMID: 31618560707691510.1056/NEJMoa1907863)
Mátés, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009). (PMID: 1941217910.1038/ng.343)
Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985). (PMID: 389982510.1007/BF00280883)
Substance Nomenclature:
0 (Bacterial Proteins)
0 (Recombinant Fusion Proteins)
0 (Trans-Activators)
89750-14-1 (Glucagon-Like Peptide 1)
Entry Date(s):
Date Created: 20210608 Date Completed: 20210615 Latest Revision: 20230203
Update Code:
20240104
PubMed Central ID:
PMC8184832
DOI:
10.1038/s41467-021-23572-4
PMID:
34099676
Czasopismo naukowe
Wearable smart electronic devices, such as smart watches, are generally equipped with green-light-emitting diodes, which are used for photoplethysmography to monitor a panoply of physical health parameters. Here, we present a traceless, green-light-operated, smart-watch-controlled mammalian gene switch (Glow Control), composed of an engineered membrane-tethered green-light-sensitive cobalamin-binding domain of Thermus thermophilus (TtCBD) CarH protein in combination with a synthetic cytosolic TtCBD-transactivator fusion protein, which manage translocation of TtCBD-transactivator into the nucleus to trigger expression of transgenes upon illumination. We show that Apple-Watch-programmed percutaneous remote control of implanted Glow-controlled engineered human cells can effectively treat experimental type-2 diabetes by producing and releasing human glucagon-like peptide-1 on demand. Directly interfacing wearable smart electronic devices with therapeutic gene expression will advance next-generation personalized therapies by linking biopharmaceutical interventions to the internet of things.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies