Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics.

Tytuł:
Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics.
Autorzy:
Yang B; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
Wei K; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.; Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.
Loebel C; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
Zhang K; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
Feng Q; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.; Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China.
Li R; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
Wong SHD; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.; Department of Biomedical Engineering, The Hong Kong Polytechnic University, HongKong, China.
Xu X; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
Lau C; Department of Physics, The Chinese University of Hong Kong, Hong Kong, China.
Chen X; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Zhao P; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
Yin C; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
Burdick JA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
Wang Y; Department of Physics, The Chinese University of Hong Kong, Hong Kong, China. .
Bian L; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China. .; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China. .; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China. .
Źródło:
Nature communications [Nat Commun] 2021 Jun 10; Vol. 12 (1), pp. 3514. Date of Electronic Publication: 2021 Jun 10.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Cell Adhesion*
Cellular Microenvironment*
Osteogenesis*
Biomimetics/*methods
Cell Culture Techniques/*methods
Hydrogels/*chemistry
Mesenchymal Stem Cells/*metabolism
Organoids/*metabolism
Adamantane/chemistry ; Biocompatible Materials/chemistry ; Cholic Acid ; Computer Simulation ; Cross-Linking Reagents/chemistry ; Cyclodextrins/chemistry ; Extracellular Matrix ; Humans ; Kinetics ; Ligands ; Mechanotransduction, Cellular ; Mesenchymal Stem Cells/cytology ; Molecular Dynamics Simulation ; Organoids/cytology ; Thermodynamics
References:
Adv Mater. 2015 Jul 1;27(25):3717-36. (PMID: 25989348)
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8819-22. (PMID: 18579789)
J Cell Biol. 2003 Feb 3;160(3):409-21. (PMID: 12566431)
J Neurosci. 2002 Sep 15;22(18):8071-83. (PMID: 12223561)
Biophys J. 1993 Jul;65(1):316-24. (PMID: 8369439)
Nat Commun. 2015 Feb 19;6:6364. (PMID: 25695512)
Adv Sci (Weinh). 2018 Jul 26;5(9):1800638. (PMID: 30250802)
EMBO Rep. 2018 Aug;19(8):. (PMID: 29967223)
Biomaterials. 2014 Feb;35(6):1857-68. (PMID: 24331708)
APL Bioeng. 2021 Feb 02;5(1):010903. (PMID: 33564739)
Nat Mater. 2013 May;12(5):458-65. (PMID: 23524375)
Biophys J. 1999 Sep;77(3):1721-32. (PMID: 10465781)
Cell. 2012 Dec 21;151(7):1513-27. (PMID: 23260139)
Angew Chem Int Ed Engl. 2013 Nov 11;52(46):12077-80. (PMID: 24108659)
Nature. 2016 Nov 24;539(7630):560-564. (PMID: 27851739)
Biomaterials. 2016 Sep;101:217-28. (PMID: 27294539)
Hybridoma. 1982;1(2):99-108. (PMID: 6208125)
Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):5953-7. (PMID: 15827122)
Nat Biomed Eng. 2020 Apr;4(4):357-363. (PMID: 31974449)
Proc Natl Acad Sci U S A. 1981 Sep;78(9):5613-7. (PMID: 6946498)
Cell. 2006 Aug 25;126(4):645-7. (PMID: 16923382)
Nat Mater. 2010 Jun;9(6):518-26. (PMID: 20418863)
Nature. 2011 Jul 20;475(7356):316-23. (PMID: 21776077)
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2686-E2695. (PMID: 29507238)
Nat Commun. 2019 Jan 31;10(1):529. (PMID: 30705265)
Nat Biotechnol. 2005 Jan;23(1):47-55. (PMID: 15637621)
APL Bioeng. 2020 Jul 24;4(3):030401. (PMID: 32743233)
Nat Rev Mater. 2016;1:. (PMID: 29214058)
J Cell Biol. 1992 Dec;119(5):1219-43. (PMID: 1447299)
Biomaterials. 2011 Sep;32(26):5979-93. (PMID: 21621838)
Nat Commun. 2018 Oct 8;9(1):4144. (PMID: 30297715)
Nat Commun. 2018 Oct 3;9(1):4049. (PMID: 30282987)
Nat Commun. 2018 Jan 31;9(1):449. (PMID: 29386514)
Biomaterials. 2014 Dec;35(37):9897-9903. (PMID: 25239043)
Cell Stem Cell. 2010 Aug 6;7(2):150-61. (PMID: 20682444)
Nature. 2009 Nov 26;462(7272):433-41. (PMID: 19940913)
Biophys J. 2009 Jun 17;96(12):5130-8. (PMID: 19527673)
Adv Mater. 2014 Feb 12;26(6):865-72. (PMID: 24127293)
Bone. 2010 Dec;47(6):1076-9. (PMID: 20817052)
Nat Mater. 2016 Mar;15(3):326-34. (PMID: 26618884)
Nat Mater. 2016 Mar;15(3):318-25. (PMID: 26618883)
Cell. 2006 Aug 25;126(4):677-89. (PMID: 16923388)
Nat Mater. 2019 Aug;18(8):883-891. (PMID: 30886401)
J Am Chem Soc. 2004 Feb 11;126(5):1577-84. (PMID: 14759218)
Nano Lett. 2015 Nov 11;15(11):7755-65. (PMID: 26503136)
J Phys Chem B. 2019 Nov 21;123(46):9831-9838. (PMID: 31664833)
J Neurochem. 2003 Nov;87(3):676-85. (PMID: 14535950)
APL Bioeng. 2018 Dec 03;2(4):046104. (PMID: 31069326)
Nat Commun. 2019 Apr 23;10(1):1848. (PMID: 31015465)
Nat Mater. 2017 Dec;16(12):1233-1242. (PMID: 29115291)
Biomaterials. 2001 Nov;22(22):3045-51. (PMID: 11575479)
Science. 2008 Dec 12;322(5908):1687-91. (PMID: 19074349)
Substance Nomenclature:
0 (Biocompatible Materials)
0 (Cross-Linking Reagents)
0 (Cyclodextrins)
0 (Hydrogels)
0 (Ligands)
G1JO7801AE (Cholic Acid)
PJY633525U (Adamantane)
Entry Date(s):
Date Created: 20210611 Date Completed: 20210629 Latest Revision: 20210702
Update Code:
20240104
PubMed Central ID:
PMC8192531
DOI:
10.1038/s41467-021-23120-0
PMID:
34112772
Czasopismo naukowe
3D culture of cells in designer biomaterial matrices provides a biomimetic cellular microenvironment and can yield critical insights into cellular behaviours not available from conventional 2D cultures. Hydrogels with dynamic properties, achieved by incorporating either degradable structural components or reversible dynamic crosslinks, enable efficient cell adaptation of the matrix and support associated cellular functions. Herein we demonstrate that given similar equilibrium binding constants, hydrogels containing dynamic crosslinks with a large dissociation rate constant enable cell force-induced network reorganization, which results in rapid stellate spreading, assembly, mechanosensing, and differentiation of encapsulated stem cells when compared to similar hydrogels containing dynamic crosslinks with a low dissociation rate constant. Furthermore, the static and precise conjugation of cell adhesive ligands to the hydrogel subnetwork connected by such fast-dissociating crosslinks is also required for ultra-rapid stellate spreading (within 18 h post-encapsulation) and enhanced mechanosensing of stem cells in 3D. This work reveals the correlation between microscopic cell behaviours and the molecular level binding kinetics in hydrogel networks. Our findings provide valuable guidance to the design and evaluation of supramolecular biomaterials with cell-adaptable properties for studying cells in 3D cultures.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies