Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Algebraic graph-assisted bidirectional transformers for molecular property prediction.

Tytuł:
Algebraic graph-assisted bidirectional transformers for molecular property prediction.
Autorzy:
Chen D; School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, China.; Department of Mathematics, Michigan State University, East Lansing, MI, USA.
Gao K; Department of Mathematics, Michigan State University, East Lansing, MI, USA.
Nguyen DD; Department of Mathematics, University of Kentucky, Lexington, KY, USA.
Chen X; School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, China.
Jiang Y; School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, China.
Wei GW; Department of Mathematics, Michigan State University, East Lansing, MI, USA. .; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA. .; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA. .
Pan F; School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, China. .
Źródło:
Nature communications [Nat Commun] 2021 Jun 10; Vol. 12 (1), pp. 3521. Date of Electronic Publication: 2021 Jun 10.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Machine Learning*
Molecular Conformation*
Neural Networks, Computer*
Drug Discovery/*methods
Algorithms ; Blood-Brain Barrier/drug effects ; Computer Simulation ; Databases, Chemical ; Drug-Related Side Effects and Adverse Reactions ; Hydrophobic and Hydrophilic Interactions ; Pharmaceutical Preparations/chemistry
References:
Int J Numer Method Biomed Eng. 2019 Mar;35(3):e3179. (PMID: 30693661)
J Chem Inf Comput Sci. 2002 Nov-Dec;42(6):1273-80. (PMID: 12444722)
Sci Rep. 2020 Feb 7;10(1):2079. (PMID: 32034168)
J Pharm Sci. 2004 Dec;93(12):3103-10. (PMID: 15514985)
J Cheminform. 2018 Jul 24;10(1):33. (PMID: 30043127)
Sci Adv. 2018 Jul 25;4(7):eaap7885. (PMID: 30050984)
J Hazard Mater. 2010 Aug 15;180(1-3):741-7. (PMID: 20494513)
J Chem Inf Model. 2019 Jul 22;59(7):3291-3304. (PMID: 31257871)
J Chem Inf Model. 2012 Jun 25;52(6):1686-97. (PMID: 22612593)
J Comput Aided Mol Des. 2020 Feb;34(2):131-147. (PMID: 31734815)
J Chem Inf Model. 2008 Apr;48(4):766-84. (PMID: 18311912)
Phys Chem Chem Phys. 2020 Feb 26;22(8):4343-4367. (PMID: 32067019)
Chem Res Toxicol. 2009 Dec;22(12):1913-21. (PMID: 19845371)
J Chem Phys. 2014 Jun 21;140(23):234105. (PMID: 24952521)
J Chem Inf Model. 2018 Feb 26;58(2):520-531. (PMID: 29314829)
Chem Sci. 2017 Oct 31;9(2):513-530. (PMID: 29629118)
Wiley Interdiscip Rev Comput Mol Sci. 2015 Nov-Dec;5(6):405-424. (PMID: 27110292)
Mol Pharm. 2018 Oct 1;15(10):4386-4397. (PMID: 29569445)
J Chem Inf Model. 2019 Aug 26;59(8):3370-3388. (PMID: 31361484)
Environ Toxicol Pharmacol. 1999 Mar;7(1):33-9. (PMID: 21781907)
J Chem Inf Model. 2020 Mar 23;60(3):1235-1244. (PMID: 31977216)
Nat Rev Drug Discov. 2003 Mar;2(3):192-204. (PMID: 12612645)
Phys Chem Chem Phys. 2020 Apr 29;22(16):8373-8390. (PMID: 32266895)
Chem Sci. 2018 Nov 19;10(6):1692-1701. (PMID: 30842833)
Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954. (PMID: 27899562)
Pac Symp Biocomput. 2000;:576-87. (PMID: 10902205)
Curr Top Med Chem. 2010;10(1):95-115. (PMID: 19929826)
J Chem Inf Model. 2010 May 24;50(5):742-54. (PMID: 20426451)
J Chem Inf Model. 2015 Nov 23;55(11):2324-37. (PMID: 26479676)
J Chem Inf Model. 2007 Nov-Dec;47(6):2140-8. (PMID: 17985865)
PLoS Comput Biol. 2017 Jul 27;13(7):e1005690. (PMID: 28749969)
J Chem Phys. 2018 Feb 7;148(5):054103. (PMID: 29421884)
J Comput Chem. 2018 Jul 30;39(20):1444-1454. (PMID: 29633287)
Grant Information:
R01 GM126189 United States GM NIGMS NIH HHS; R01 GM129004 United States GM NIGMS NIH HHS
Substance Nomenclature:
0 (Pharmaceutical Preparations)
Entry Date(s):
Date Created: 20210611 Date Completed: 20210629 Latest Revision: 20240402
Update Code:
20240402
PubMed Central ID:
PMC8192505
DOI:
10.1038/s41467-021-23720-w
PMID:
34112777
Czasopismo naukowe
The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies