Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection.

Tytuł:
Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection.
Autorzy:
Amara U; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.; Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
Mehran MT; School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan.
Sarfaraz B; School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan.
Mahmood K; Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan. .
Hayat A; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
Nasir M; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
Riaz S; Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
Nawaz MH; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan. .
Źródło:
Mikrochimica acta [Mikrochim Acta] 2021 Jun 12; Vol. 188 (7), pp. 230. Date of Electronic Publication: 2021 Jun 12.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Wien ; New York : Springer-Verlag.
MeSH Terms:
Dopamine/*chemistry
Electrochemical Techniques/*methods
Electrodes/*standards
Imides/*chemistry
Perylene/*analogs & derivatives
Graphite ; Humans ; Perylene/chemistry
References:
Xu S, Dall’Agnese Y, Wei G, Zhang C, Gogotsi Y, Han W (2018) Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy 50:479–488. (PMID: 10.1016/j.nanoen.2018.05.064)
Huang Q, et al. (2020) Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS Sustainable Chemistry & Engineering. (PMID: 10.1021/acssuschemeng.9b06623)
Shapiro MG, Westmeyer GG, Romero PA, Szablowski JO, Küster B, Shah A, Otey CR, Langer R, Arnold FH, Jasanoff A (2010) Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat Biotechnol 28(3):264–270. (PMID: 20190737307340010.1038/nbt.1609)
Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20(12):1036–1046. (PMID: 29106542571617910.1093/ijnp/pyx056)
Huang C-W, Lu MS-C (2011) Electrochemical detection of the neurotransmitter dopamine by nanoimprinted interdigitated electrodes and a CMOS circuit with enhanced collection efficiency. IEEE Sensors J 11(9):1826–1831. (PMID: 10.1109/JSEN.2011.2105260)
Yang J, Hu Y, Li Y (2019) Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosens Bioelectron 135:224–230. (PMID: 3103003010.1016/j.bios.2019.03.054)
Li R, Liang H, Zhu M, Lai M, Wang S, Zhang H, Ye H, Zhu R, Zhang W (2021) Electrochemical dual signal sensing platform for the simultaneous determination of dopamine, uric acid and glucose based on copper and cerium bimetallic carbon nanocomposites. Bioelectrochemistry 139:107745. (PMID: 3352465410.1016/j.bioelechem.2021.107745)
Savk A, Özdil B, Demirkan B, Nas MS, Calimli MH, Alma MH, Inamuddin, Asiri AM, Şen F (2019) Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Mater Sci Eng C 99:248–254. (PMID: 10.1016/j.msec.2019.01.113)
Umapathi S et al (2020) Electrochemical sensor based on CuSe for determination of dopamine. Microchim Acta 187(8):1–13. (PMID: 10.1007/s00604-020-04405-5)
Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN (2018) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 8(13):1703043. (PMID: 10.1002/aenm.201703043)
Wang Z, Xu Z, Huang H, Chu X, Xie Y, Xiong D, Yan C, Zhao H, Zhang H, Yang W (2020) Unraveling and Regulating Self-Discharge Behavior of Ti3C2T x MXene-Based Supercapacitors. ACS Nano 14(4):4916–4924. (PMID: 3218684610.1021/acsnano.0c01056)
Chen WY et al (2020) Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun 11(1):1–10. (PMID: 10.1038/s41467-019-13993-7)
Chertopalov S, Mochalin VN (2018) Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 12(6):6109–6116. (PMID: 2988309210.1021/acsnano.8b02379)
Lyu B, Kim M, Jing H, Kang J, Qian C, Lee S, Cho JH (2019) Large-area MXene electrode array for flexible electronics. ACS Nano 13(10):11392–11400. (PMID: 3155388410.1021/acsnano.9b04731)
Chen Y, Ge Y, Huang W, Li Z, Wu L, Zhang H, Li X (2020) Refractive index sensors based on Ti3C2Tx MXene fibers. ACS Applied Nano Materials 3(1):303–311. (PMID: 10.1021/acsanm.9b01889)
Ma Y, Liu N, Li L, Hu X, Zou Z, Wang J, Luo S, Gao Y (2017) A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 8(1):1207. (PMID: 29089488566393610.1038/s41467-017-01136-9)
Maleski K, Mochalin VN, Gogotsi Y (2017) Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater 29(4):1632–1640. (PMID: 10.1021/acs.chemmater.6b04830)
Enyashin AN, Ivanovskii AL (2013) Structural and electronic properties and stability of MX enes Ti2C and Ti3C2 functionalized by methoxy groups. J Phys Chem C 117(26):13637–13643. (PMID: 10.1021/jp401820b)
Zhu P, Wang Y, Ma P, Li S, Fan F, Cui K, Ge S, Zhang Y, Yu J (2019) Low-power and high-performance trimethylamine gas sensor based on nn heterojunction microbelts of perylene diimide/CdS. Anal Chem 91(9):5591–5598. (PMID: 3089201810.1021/acs.analchem.8b04497)
Amara U, Mahmood K, Riaz S, Nasir M, Hayat A, Hanif M, Yaqub M, Han D, Niu L, Nawaz MH (2021) Self-assembled perylene-tetracarboxylic acid/multi-walled carbon nanotube adducts based modification of screen-printed interface for efficient enzyme immobilization towards glucose biosensing. Microchem J 165:106109. (PMID: 10.1016/j.microc.2021.106109)
Li G, Zhao Y, Li J, Cao J, Zhu J, Sun XW, Zhang Q (2015) Synthesis, characterization, physical properties, and OLED application of single BN-fused perylene diimide. The Journal of organic chemistry 80(1):196–203. (PMID: 2543769110.1021/jo502296z)
Schuster NJ, Paley DW, Jockusch S, Ng F, Steigerwald ML, Nuckolls C (2016) Electron delocalization in perylene diimide helicenes. Angew Chem Int Ed 55(43):13519–13523. (PMID: 10.1002/anie.201607878)
Aulin YV, Felter KM, Günbas DD, Dubey RK, Jager WF, Grozema FC (2018) Morphology-independent efficient singlet exciton fission in perylene diimide thin films. ChemPlusChem 83(4):230–238. (PMID: 3195728710.1002/cplu.201700449)
Yip AMH, Shum J, Liu HW, Zhou H, Jia M, Niu N, Li Y, Yu C, Lo KKW (2019) Luminescent rhenium (I)–polypyridine complexes appended with a perylene diimide or benzoperylene monoimide moiety: photophysics, intracellular sensing, and photocytotoxic activity. Chem Eur J 25(38):8970–8974. (PMID: 3090112210.1002/chem.201900345)
Zou G, Zhang Z, Guo J, Liu B, Zhang Q, Fernandez C, Peng Q (2016) Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl Mater Interfaces 8(34):22280–22286. (PMID: 2751761510.1021/acsami.6b08089)
Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, Mahmoud KA, Tkac J (2018) Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensors Actuators B Chem 263:360–368. (PMID: 10.1016/j.snb.2018.02.124)
Riaz S et al (2016) Sonication-induced self-assembly of polymeric porphyrin–fullerene: Formation of nanorings. J Appl Polym Sci:133(24).
Pu J-H, Zhao X, Zha XJ, Li WD, Ke K, Bao RY, Liu ZY, Yang MB, Yang W (2020) A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 74:104814. (PMID: 10.1016/j.nanoen.2020.104814)
Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8(32):21011–21019. (PMID: 2745414810.1021/acsami.6b06455)
Ali A et al (2016) Transparent and conductive Ti 3 C 2 T x (MXene) thin film fabrication by electrohydrodynamic atomization technique. J Mater Sci Mater Electron 27(5):5440–5445. (PMID: 10.1007/s10854-016-4447-z)
Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu J, Barsoum MW, Gogotsi Y (2014) Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci 111(47):16676–16681. (PMID: 25389310425011110.1073/pnas.1414215111)
Yang Y, Shi L, Cao Z, Wang R, Sun J (2019) Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle–nanosheet hybrid network. Adv Funct Mater 29(14):1807882. (PMID: 10.1002/adfm.201807882)
Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B, Kim CK, Choi YK, Kim J, Gogotsi Y, Jung HT (2018) Metallic Ti3C2T x MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2):986–993. (PMID: 2936851910.1021/acsnano.7b07460)
Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoud KA, Tkac J (2017) Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim Acta 235:471–479. (PMID: 29109588566945710.1016/j.electacta.2017.03.073)
Li X, Yin X, Han M, Song C, Xu H, Hou Z, Zhang L, Cheng L (2017) Ti 3 C 2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C 5(16):4068–4074. (PMID: 10.1039/C6TC05226F)
Soundiraraju B, George BK (2017) Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11(9):8892–8900. (PMID: 2884639410.1021/acsnano.7b03129)
Zhao H, Zhang YY, Xu H, He EF, Zhang ZL, Peng QM, Zhang RJ, Zhang HQ (2015) Perylene diimide dye/layered carbide charge transfer composite: design, synthesis, and photophysical properties. Mater Lett 161:208–211. (PMID: 10.1016/j.matlet.2015.08.076)
Suram SK, Newhouse PF, Gregoire JM (2016) High throughput light absorber discovery, part 1: an algorithm for automated tauc analysis. ACS Comb Sci 18(11):673–681. (PMID: 2766241010.1021/acscombsci.6b00053)
Zhang Y, Jiang X, Zhang J, Zhang H, Li Y (2019) Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens Bioelectron 130:315–321. (PMID: 3078498510.1016/j.bios.2019.01.043)
Varol TÖ et al (2019) Fabrication of graphene/azobenzene-perylene diimide derivative modified electrochemical sensors for the dopamine detection based on full factorial experimental design. Measurement 147:106867. (PMID: 10.1016/j.measurement.2019.106867)
Purushothama H, Nayaka YA (2017) Electrochemical study of hydrochlorothiazide on electrochemically pre-treated pencil graphite electrode as a sensor. Sensing and bio-sensing research 16:12–18. (PMID: 10.1016/j.sbsr.2017.09.004)
Lee S-K, Song MJ, Kim JH, Kan TS, Lim YK, Ahn JP, Lim DS (2014) 3D-networked carbon nanotube/diamond core-shell nanowires for enhanced electrochemical performance. NPG Asia Materials 6(7):e115–e115. (PMID: 10.1038/am.2014.50)
Ejaz A, Joo Y, Jeon S (2017) Fabrication of 1, 4-bis (aminomethyl) benzene and cobalt hydroxide@ graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin. Sensors Actuators B Chem 240:297–307. (PMID: 10.1016/j.snb.2016.08.171)
Hsu M-S, Chen YL, Lee CY, Chiu HT (2012) Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Appl Mater Interfaces 4(10):5570–5575. (PMID: 2302023510.1021/am301452b)
Li J, Jiang J, Xu Z, Liu M, Feng H, Liu Y, Qian D (2017) Synthesis of a nanocomposite consisting of Cu 2 O and N-doped reduced graphene oxide with enhanced electrocatalytic activity for amperometric determination of diethylstilbestrol. Microchim Acta 184(11):4331–4339. (PMID: 10.1007/s00604-017-2452-4)
Ning J, He Q, Luo X, Wang M, Liu D, Wang J, Liu J, Li G (2018) Rapid and sensitive determination of vanillin based on a glassy carbon electrode modified with Cu2O-electrochemically reduced graphene oxide nanocomposite film. Sensors 18(9):2762. (PMID: 616479310.3390/s180927626164793)
He W, Liu R, Zhou P, Liu Q, Cui T (2020) Flexible micro-sensors with self-assembled graphene on a polyolefin substrate for dopamine detection. Biosens Bioelectron 167:112473. (PMID: 3284627010.1016/j.bios.2020.112473)
Mercante LA, Pavinatto A, Iwaki LEO, Scagion VP, Zucolotto V, Oliveira ON Jr, Mattoso LHC, Correa DS (2015) Electrospun polyamide 6/poly (allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Interfaces 7(8):4784–4790. (PMID: 2564432510.1021/am508709c)
Ramachandran R, Leng X, Zhao C, Xu ZX, Wang F (2020) 2D siloxene sheets: A novel electrochemical sensor for selective dopamine detection. Appl Mater Today 18:100477. (PMID: 10.1016/j.apmt.2019.100477)
Reddy S, Swamy BK, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86. (PMID: 10.1016/j.electacta.2011.11.091)
Hobbs CN, Johnson JA, Verber MD, Mark Wightman R (2017) An implantable multimodal sensor for oxygen, neurotransmitters, and electrophysiology during spreading depolarization in the deep brain. Analyst 142(16):2912–2920. (PMID: 28715004559524410.1039/C7AN00508C)
Prasad BB, Jauhari D, Tiwari MP (2013) A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens Bioelectron 50:19–27. (PMID: 10.1016/j.bios.2013.05.062)
Yuan Q, Liu Y, Ye C, Sun H, Dai D, Wei Q, Lai G, Wu T, Yu A, Fu L, Chee KWA, Lin CT (2018) Highly stable and regenerative graphene–diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosens Bioelectron 111:117–123. (PMID: 2966058210.1016/j.bios.2018.04.006)
Ören T, Birel Ö, Anık Ü (2018) Electrochemical determination of dopamine using a novel perylenediimide-derivative modified carbon paste electrode. Anal Lett 51(11):1680–1693. (PMID: 10.1080/00032719.2017.1388816)
Yola ML (2021) Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu 2 ZnSnS 4 NPs/Pt/gC 3 N 4 composite. Microchim Acta 188(3):1–13. (PMID: 10.1007/s00604-021-04735-y)
Karaman C et al (2021) Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@ carbon dots and Cd 0.5 Zn 0.5 S/d-Ti 3 C 2 T x MXene composite for heart-type fatty acid–binding protein detection. Microchim Acta 188(6):1–15. (PMID: 10.1007/s00604-021-04838-6)
Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191. (PMID: 2945933110.1016/j.bios.2018.02.031)
Younus AR, Iqbal J, Muhammad N, Rehman F, Tariq M, Niaz A, Badshah S, Saleh TA, Rahim A (2019) Nonenzymatic amperometric dopamine sensor based on a carbon ceramic electrode of type SiO 2/C modified with Co 3 O 4 nanoparticles. Microchim Acta 186(7):471. (PMID: 10.1007/s00604-019-3605-4)
Jiang L, Nelson GW, Abda J, Foord JS (2016) Novel modifications to carbon-based electrodes to improve the electrochemical detection of dopamine. ACS Appl Mater Interfaces 8(42):28338–28348. (PMID: 2742073010.1021/acsami.6b03879)
Caetano FR, Felippe LB, Zarbin AJG, Bergamini MF, Marcolino-Junior LH (2017) Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sensors Actuators B Chem 243:43–50. (PMID: 10.1016/j.snb.2016.11.096)
Venkataprasad G, Madhusudana Reddy T, Lakshmi Narayana A, Hussain OM, Shaikshavali P, Venu Gopal T, Gopal P (2019) A facile synthesis of Fe3O4-Gr nanocomposite and its effective use as electrochemical sensor for the determination of dopamine and as anode material in lithium ion batteries. Sensors Actuators A Phys 293:87–100. (PMID: 10.1016/j.sna.2019.04.035)
Wiench P, González Z, Menéndez R, Grzyb B, Gryglewicz G (2018) Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors Actuators B Chem 257:143–153. (PMID: 10.1016/j.snb.2017.10.106)
Sookhakian M, Basirun WJ, Goh BT, Woi PM, Alias Y (2019) Molybdenum disulfide nanosheet decorated with silver nanoparticles for selective detection of dopamine. Colloids Surf B: Biointerfaces 176:80–86. (PMID: 3059470610.1016/j.colsurfb.2018.12.058)
Lu X et al (2021) A covalent organic polymer–TiO 2/Ti 3 C 2 heterostructure as nonenzymatic biosensor for voltammetric detection of dopamine and uric acid. Microchim Acta 188(3):1–11. (PMID: 10.1007/s00604-021-04755-8)
Kathiresan V et al (2021) A simple one-step electrochemical deposition of bioinspired nanocomposite for the non-enzymatic detection of dopamine. Journal of Analytical Science and Technology 12(1):1–10. (PMID: 10.1186/s40543-021-00260-y)
Shahzad F, Iqbal A, Zaidi SA, Hwang SW, Koo CM (2019) Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. J Ind Eng Chem 79:338–344. (PMID: 10.1016/j.jiec.2019.03.061)
Zheng J, Wang B, Ding A, Weng B, Chen J (2018) Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J Electroanal Chem 816:189–194. (PMID: 10.1016/j.jelechem.2018.03.056)
Chen T-W, Chinnapaiyan S, Chen SM, Ali MA, Elshikh MS, Mahmoud AH (2020) A feasible sonochemical approach to synthesize CuO@ CeO2 nanomaterial and their enhanced non-enzymatic sensor performance towards neurotransmitter. Ultrason Sonochem 63:104903. (PMID: 3195199910.1016/j.ultsonch.2019.104903)
Deepika J, Sha R, Badhulika S (2019) A ruthenium (IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine. Microchim Acta 186(7):480. (PMID: 10.1007/s00604-019-3622-3)
Grant Information:
20-4993/R&D/HEC/14/614 Higher Education Commision, Pakistan; 16-14/CRGP/CIIT/LHR/15/776 COMSATS Institute of Information Technology
Contributed Indexing:
Keywords: Dopamine; Electrochemical sensor; Low oxidation potential; MXene; Perylene diimide; Serum sample analysis
Substance Nomenclature:
0 (Imides)
0 (perylenediimide)
5QD5427UN7 (Perylene)
7782-42-5 (Graphite)
VTD58H1Z2X (Dopamine)
Entry Date(s):
Date Created: 20210612 Date Completed: 20211223 Latest Revision: 20211223
Update Code:
20240104
DOI:
10.1007/s00604-021-04884-0
PMID:
34117945
Czasopismo naukowe
The synthesis of novel architecture comprising perylene diimide (PDI)-MXene (Ti 3 C 2 T X )-integrated graphitic pencil electrode for electrochemical detection of dopamine (DA) is reported. The good electron passage between PDI-MXene resulted in an unprecedented nano-adduct bearing enhanced electrocatalytic activity with low-energy electronic transitions. The anionic groups of PDI corroborated enhanced active surface area for selective binding and robust oxidation of DA, thereby decreasing the applied potential. Meanwhile, the MXene layers acted as functional conducive support for PDI absorption via strong H-bonding. The considerable conductivity of MXene enhanced electron transportation thus increasing the sensitivity of sensing interface. The inclusively engineered nano-adduct resulted in robust DA oxidation with ultra-sensitivity (38.1 μAμM -1 cm -2 ), and low detection limit (240 nM) at very low oxidation potential (-0.135 V). Moreover, it selectively signaled DA in the presence of physiological interferents with wide linearity (100-1000 μM). The developed transducing interface performed well in human serum samples with RSD (0.1 to 0.4%) and recovery (98.6 to 100.2%) corroborating the viability of the practical implementation of this integrated system. Graphical abstract Schematic illustration of the oxidative process involved on constructed sensing interface for the development of a non-enzymatic dopamine sensor.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies