Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Theory of temperature-dependent consumer-resource interactions.

Tytuł :
Theory of temperature-dependent consumer-resource interactions.
Autorzy :
Synodinos AD; Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
Haegeman B; Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
Sentis A; INRAE, Aix Marseille University, UMR RECOVER, Aix-en-Provence, France.
Montoya JM; Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
Pokaż więcej
Źródło :
Ecology letters [Ecol Lett] 2021 Aug; Vol. 24 (8), pp. 1539-1555. Date of Electronic Publication: 2021 Jun 13.
Typ publikacji :
Journal Article
Język :
Imprint Name(s) :
Publication: Oxford, UK : Blackwell Publishing
Original Publication: Oxford, UK : [Paris, France] : Blackwell Science ; Centre national de la recherche scientifique, c1998-
MeSH Terms :
Food Chain*
Biomass ; Temperature
References :
Amarasekare, P. (2015) Effects of temperature on consumer-resource interactions. Journal of Animal Ecology, 84, 665-679.
Amarasekare, P. (2019) Effects of climate warming on consumer-resource interactions: a latitudinal perspective. Frontiers in Ecology and Evolution, 7, 146.
Archer, L.C., Sohlström, E.H., Gallo, B., Jochum, M., Woodward, G., Kordas, R.L. et al. (2019) Consistent temperature dependence of functional response parameters and their use in predicting population abundance. Journal of Animal Ecology, 88, 1670-1683.
Barbier, M. & Loreau, M. (2019) Pyramids and cascades: a synthesis of food chain functioning and stability. Ecology Letters, 22, 405-419.
Berlow, E.L., Navarrete, S.A., Briggs, C.J., Power, M.E. & Menge, B.A. (1999) Quantifying variation in the strengths of species interactions. Ecology, 80, 2206.
Berlow, E.L., Neutel, A.-M., Cohen, J.E., de Ruiter, P.C., Ebenman, B.O., Emmerson, M. et al. (2004) Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology, 73(3), 585-598.
Betini, G.S., Avgar, T., McCann, K.S. & Fryxell, J.M. (2019) Temperature triggers a non-linear response in resource-consumer interaction strength. Ecosphere, 10(8), e02787.
Bideault, A., Galiana, N., Zelnik, Y.R., Gravel, D., Loreau, M., Barbier, M. et al. (2020) Thermal mismatches in biological rates determine trophic control and biomass distribution under warming. Global Change Biology, 27(2), 257-269.
Binzer, A., Guill, C., Brose, U. & Rall, B.C. (2012) The dynamics of food chains under climate change and nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2935-2944.
Binzer, A., Guill, C., Rall, B.C. & Brose, U. (2016) Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Global Change Biology, 22, 220-227.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
Caswell, H. (2019) Sensitivity analysis: matrix methods in demography and ecology. Demographic research monographs. Cham, Switzerland: Springer International Publishing.
Chitnis, N., Hyman, J.M. & Cushing, J.M. (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology, 70, 1272-1296.
Dannon, E.A., Tamò, M., van Huis, A. & Dicke, M. (2010) Functional response and life history parameters of Apanteles taragamae, a larval parasitoid of Maruca vitrata. BioControl, 55, 363-378.
Daugaard, U., Petchey, O.L. & Pennekamp, F. (2019) Warming can destabilize predator-prey interactions by shifting the functional response from Type III to Type II. Journal of Animal Ecology, 88, 1575-1586.
Dee, L.E., Okamtoto, D., Gårdmark, A., Montoya, J.M. & Miller, S.J. (2020) Temperature variability alters the stability and thresholds for collapse of interacting species. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190457.
Dell, A.I., Pawar, S. & Savage, V.M. (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 108, 10591-10596.
Dell, A.I., Pawar, S. & Savage, V.M. (2014) Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. Journal of Animal Ecology, 83, 70-84.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. et al. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668-6672.
Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R. & Mearns, L.O. (2000) Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
Ehnes, R.B., Rall, B.C. & Brose, U. (2011) Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecology Letters, 14, 993-1000.
Englund, G., Öhlund, G., Hein, C.L. & Diehl, S. (2011) Temperature dependence of the functional response. Ecology Letters, 14, 914-921.
Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J. et al. (2011) Trophic downgrading of planet earth. Science, 333, 301-306.
Fussmann, K.E., Schwarzmüller, F., Brose, U., Jousset, A. & Rall, B.C. (2014) Ecological stability in response to warming. Nature Climate Change, 4, 206-210.
Gilbert, B., Tunney, T.D., McCann, K.S., DeLong, J.P., Vasseur, D.A., Savage, V. et al. (2014) A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters, 17, 902-914.
Gilooly, J.F., Brown, J.H., Geoffrey, B.W., Savage, V.M. & Charnov, E.L. (2001) Effects of size and temperature on metabolic rate. Science, 293, 2248-2251.
Handeland, S.O., Imsland, A.K. & Stefansson, S.O. (2008) The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture, 283, 36-42.
Hanson, J.M. & Peters, R.H. (1984) Empirical prediction of crustacean zooplankton biomass and profundal macrobenthos biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 41, 439-445.
IPCC. (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K. & Boschung, J. (Eds.). Cambridge, UK; New York, NY: Cambridge University Press.
Jeschke, J.M., Kopp, M. & Tollrian, R. (2004) Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biological Reviews, 79(2), 337-349.
Johnson, C.A. & Amarasekare, P. (2015) A metric for quantifying the oscillatory tendency of consumer-resource interactions. The American Naturalist, 185, 87-99.
Kalinkat, G., Schneider, F.D., Digel, C., Guill, C., Rall, B.C. & Brose, U. (2013) Body masses, functional responses and predator-prey stability. Ecology Letters, 16, 1126-1134.
Kuiters, A.T. (2013) Diversity-stability relationships in plant communities of contrasting habitats. Journal of Vegetation Science, 24, 453-462.
Lampert, W., Fleckner, W., Rai, H. & Taylor, B.E. (1986) Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography, 31, 478-490.
Lang, B., Ehnes, R.B., Brose, U. & Rall, B.C. (2017) Temperature and consumer type dependencies of energy flows in natural communities. Oikos, 126, 1717-1725.
Manlik, O., Lacy, R.C. & Sherwin, W.B. (2018) Applicability and limitations of sensitivity analyses for wildlife management. Jouranl of Applied Ecology, 55, 1430-1440.
May, R.M. (1972) Limit cycles in predator-prey communities. Science, 177, 900-902.
McCann, K.S. (2011) Food webs (MPB-50). Princeton University Press. Monograph Pop Bio. Available at: [Accessed 10 September 2020].
Montoya, J.M. & Raffaelli, D. (2010) Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2013-2018.
Novak, M. (2010) Estimating interaction strengths in nature: experimental support for an observational approach. Ecology, 91, 2394-2405.
O'Connor, M.I., Piehler, M.F., Leech, D.M., Anton, A. & Bruno, J.F. (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biology, 7, e1000178.
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
Pawar, S., Dell, A.I., Savage, V.M. & Knies, J.L. (2016) Real versus artificial variation in the thermal sensitivity of biological traits. The American Naturalist, 187, E41-E52.
Petchey, O.L., Brose, U. & Rall, B.C. (2010) Predicting the effects of temperature on food web connectance. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2081-2091.
Pörtner, H.O. & Farrell, A.P. (2008) Ecology: physiology and climate change. Science, 322(5902), 690-692.
Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F., Vucic-Pestic, O. et al. (2012) Universal temperature and body-mass scaling of feeding rates. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2923-2934.
Rall, B., Guill, C. & Brose, U. (2008) Food-web connectance and predator interference dampen the paradox of enrichment. Oikos, 117, 202-213.
Rall, B.Ö.C., Vucic-Pestic, O., Ehnes, R.B., EmmersoN, M. & Brose, U. (2010) Temperature, predator-prey interaction strength and population stability. Global Change Biology, 16, 2145-2157.
Réveillon, T., Rota, T., Chauvet, É., Lecerf, A. & Sentis, A. (2019) Repeatable inter-individual variation in the thermal sensitivity of metabolic rate. Oikos, 128, 1633-1640.
Rip, J.M.K. & McCann, K.S. (2011) Cross-ecosystem differences in stability and the principle of energy flux. Ecology Letters, 14, 733-740.
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. & Pounds, J.A. (2003) Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.
Rose, J.M. & Caron, D.A. (2007) Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnology and Oceanography, 52, 886-895.
Rosenzweig, M.L. (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171, 385-387.
Rosenzweig, M.L. & MacArthur, R.H. (1963) Graphical representation and stability conditions of predator-prey interactions. The American Naturalist, 97, 209-223.
Sarnelle, O. & Wilson, A.E. (2008) Type III functional response in Daphnia. Ecology, 89, 1723-1732.
Savage, V.M., Gilloly, J.F., Brown, J.H., Charnov, E.L. & Charnov, E.L. (2004) Effects of body size and temperature on population growth. The American Naturalist, 163, 429-441.
Sentis, A., Binzer, A. & Boukal, D.S. (2017) Temperature-size responses alter food chain persistence across environmental gradients. Ecology Letters, 20, 852-862.
Sentis, A., Hemptinne, J.L. & Brodeur, J. (2012) Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency. Oecologia, 169, 1117-1125.
Sentis, A., Morisson, J. & Boukal, D.S. (2015) Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics. Global Change Biology, 21, 3290-3298.
Stemberger, R.S. & Gilbert, J.J. (1985) Body size, food concentration, and population growth in planktonic rotifers. Ecology, 66, 1151-1159.
Thakur, M.P., Künne, T., Griffin, J.N. & Eisenhauer, N. (2017) Warming magnifies predation and reduces prey coexistence in a model litter arthropod system. Proceedings of the Royal Society B: Biological Sciences, 284, 20162570.
Thomas, M.K., Kremer, C.T., Klausmeier, C.A. & Litchman, E. (2012) A global pattern of thermal adaptation in marine phytoplankton. Science, 338, 1085-1088.
Uiterwaal, S.F. & DeLong, J.P. (2020) Functional responses are maximized at intermediate temperatures. Ecology, 101(4), e02975.
Uszko, W., Diehl, S., Englund, G. & Amarasekare, P. (2017) Effects of warming on predator-prey interactions - A resource-based approach and a theoretical synthesis. Ecology Letters, 20, 513-523.
Vasseur, D.A., DeLong, J.P., Gilbert, B., Greig, H.S., Harley, C.D.G., McCann, K.S. et al. (2014) Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281(1779), 20132612.
Vasseur, D.A. & McCann, K.S. (2005) A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. The American Naturalist, 166, 184-198.
Vucic-Pestic, O., Ehnes, R.B., Rall, B.C. & Brose, U. (2011) Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biology, 17, 1301-1310.
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C. et al. (2002) Ecological responses to recent climate change. Nature, 416, 389-395.
West, D.C. & Post, D.M. (2016) Impacts of warming revealed by linking resource growth rates with consumer functional responses. Journal of. Animal Ecology, 85, 671-680.
Wootton, J.T. & Emmerson, M. (2005) Measurement of interaction strength in nature. Annual Reviews in Ecology Evolution and Systematics, 36, 419-444.
Wurtsbaugh, W.A. & Davis, G.E. (1977) Effects of temperature and ration level on the growth and food conversion efficiency of Salmo gairdneri, Richardson. Journal of Fish Biology, 11, 87-98.
Yodzis, P. & Innes, S. (1992) Body size and consumer-resource dynamics. The American Naturalist, 139, 1151-1175.
Zhang, L., Takahashi, D., Hartvig, M. & Andersen, K.H. (2017) Food-web dynamics under climate change. Proceedings of the Royal Society B: Biological Sciences, 284, 20171772.
Zhao, Q., Liu, S. & Niu, X. (2020) Effect of water temperature on the dynamic behavior of phytoplankton-zooplankton model. Applied Mathematics and Computation, 378, 125211.
Grant Information :
726176 H2020 European Research Council; ANR-10-LABX-41 Agence Nationale de la Recherche
Contributed Indexing :
Keywords: biomass distributions; climate change; community stability; consumer; food webs; interaction strength; resource dynamics; temperature dependence
Entry Date(s) :
Date Created: 20210613 Date Completed: 20210713 Latest Revision: 20210713
Update Code :
Czasopismo naukowe
Changes in temperature affect consumer-resource interactions, which underpin the functioning of ecosystems. However, existing studies report contrasting predictions regarding the impacts of warming on biological rates and community dynamics. To improve prediction accuracy and comparability, we develop an approach that combines sensitivity analysis and aggregate parameters. The former determines which biological parameters impact the community most strongly. The use of aggregate parameters (i.e., maximal energetic efficiency, ρ, and interaction strength, κ), that combine multiple biological parameters, increases explanatory power and reduces the complexity of theoretical analyses. We illustrate the approach using empirically derived thermal dependence curves of biological rates and applying it to consumer-resource biomass ratio and community stability. Based on our analyses, we generate four predictions: (1) resource growth rate regulates biomass distributions at mild temperatures, (2) interaction strength alone determines the thermal boundaries of the community, (3) warming destabilises dynamics at low and mild temperatures only and (4) interactions strength must decrease faster than maximal energetic efficiency for warming to stabilise dynamics. We argue for the potential benefits of directly working with the aggregate parameters to increase the accuracy of predictions on warming impacts on food webs and promote cross-system comparisons.
(© 2021 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies