Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Validation of a Population Pharmacokinetic Model of Vortioxetine Using Therapeutic Drug Monitoring Data.

Tytuł:
Validation of a Population Pharmacokinetic Model of Vortioxetine Using Therapeutic Drug Monitoring Data.
Autorzy:
Frederiksen T; PK/PD Modelling and Simulation, H. Lundbeck A/S, Ottiliavej 9, Valby, Denmark. .; Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark. .
Smith RL; Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.
Wollmann BM; Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.
Areberg J; PK/PD Modelling and Simulation, H. Lundbeck A/S, Ottiliavej 9, Valby, Denmark.
Molden E; Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.; Department of Pharmacy, University of Oslo, Oslo, Norway.
Źródło:
Clinical pharmacokinetics [Clin Pharmacokinet] 2021 Nov; Vol. 60 (11), pp. 1475-1486. Date of Electronic Publication: 2021 Jun 14.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: [Switzerland] : Adis, part of Springer Science+Business Media
Original Publication: New York, ADIS Press.
MeSH Terms:
Cytochrome P-450 CYP2D6*/genetics
Drug Monitoring*
Genotype ; Humans ; Retrospective Studies ; Vortioxetine
References:
Whiting B, Kelman AW, Grevel J. Population pharmacokinetics theory and clinical application. Clin Pharmacokinet. 1986;11:387–401. (PMID: 10.2165/00003088-198611050-00004)
Gaedigk A. Complexities of CYP2D6 gene analysis and interpretation. Int Rev Psychiatry. 2013;25:534–53. (PMID: 10.3109/09540261.2013.825581)
Gaedigk A, Ingelman-Sundberg M, Miller NA, Leeder JS, Whirl-Carrillo M, Klein TE. The Pharmacogene Variation (PharmVar) Consortium: incorporation of the human cytochrome P450 (CYP) allele nomenclature database. Clin Pharmacol Ther. 2018;103:399–401. (PMID: 10.1002/cpt.910)
Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS. The CYP2D6 Activity Score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008;83:234–42. (PMID: 10.1038/sj.clpt.6100406)
Gaedigk A, Dinh JC, Jeong H, Prasad B, Leeder JS. Ten Years’ experience with the CYP2D6 Activity Score: a perspective on future investigations to improve clinical predictions for precision therapeutics. J Pers Med. 2018;8:15. (PMID: 10.3390/jpm8020015)
Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet. 2009;48:761–804. (PMID: 10.2165/11318070-000000000-00000)
Thase ME, Mahableshwarkar AR, Dragheim M, Loft H, Vieta E. A meta-analysis of randomized, placebo-controlled trials of vortioxetine for the treatment of major depressive disorder in adults. Eur Neuropsychopharmacol. 2016;26:979–93. (PMID: 10.1016/j.euroneuro.2016.03.007)
Baldwin DS, Chrones L, Florea I, Nielsen R, Nomikos GG, Palo W, et al. The safety and tolerability of vortioxetine: analysis of data from randomized placebo-controlled trials and open-label extension studies. J Psychopharmacol. 2016;30:242–52. (PMID: 10.1177/0269881116628440)
Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry. 2018;51:9–62. (PMID: 10.1055/s-0043-116492)
Areberg J, Petersen KB, Chen G, Naik H. Population pharmacokinetic meta-analysis of vortioxetine in healthy individuals. Basic Clin Pharmacol Toxicol. 2014;115:552–9. (PMID: 10.1111/bcpt.12256)
Hvenegaard MG, Bang-Andersen B, Pedersen H, Jorgensen M, Puschl A, Dalgaard L. Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012;40:1357–65. (PMID: 10.1124/dmd.112.044610)
Frederiksen T, Areberg J, Schmidt E, Bjerregaard Stage T, Brøsen K. Quantification of in vivo metabolic activity of CYP2D6 genotypes and alleles through population pharmacokinetic analysis of vortioxetine. Clin Pharmacol Ther. 2020;109:150–9. (PMID: 10.1002/cpt.1972)
Mannheimer B, Haslemo T, Lindh JD, Eliasson E, Molden E. Risperidone and venlafaxine metabolic ratios strongly predict a CYP2D6 poor metabolizing genotype. Ther Drug Monit. 2016;38:127–34. (PMID: 10.1097/FTD.0000000000000251)
Haslemo T, Eliasson E, Jukic MM, Ingelman-Sundberg M, Molden E. Significantly lower CYP2D6 metabolism measured as the O/N-desmethylvenlafaxine metabolic ratio in carriers of CYP2D6*41 versus CYP2D6*9 or CYP2D6*10: a study on therapeutic drug monitoring data from 1003 genotyped Scandinavian patients. Br J Clin Pharmacol. 2019;85:194–201. (PMID: 10.1111/bcp.13788)
Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin Transl Sci. 2019;13:116–24. (PMID: 10.1111/cts.12692)
Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med. 2017;19:215–23. (PMID: 10.1038/gim.2016.87)
Glass PS, Shafer S, Reves JG. Intravenous drug delivery systems. Miller’s Anesth. Philadelphia: Elsevier; 2004. pp. 439–80.
Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther. 2017;102:688–700. (PMID: 10.1002/cpt.690)
US Drug label. TRINTELLIX (vortioxetine) tablets, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/204447s017lbl.pdf . Accessed 30 Oct 2020.
DiMatteo MR, Lepper HS, Croghan TW. Depression Is a risk factor for noncompliance with medical treatment: meta-analysis of the effects of anxiety and depression on patient adherence. Arch Intern Med. 2000;160:2101–7. (PMID: 10.1001/archinte.160.14.2101)
Areberg J, Dragheim M. Assessment of patient compliance using pharmacokinetic data in clinical trials in depressed patients treated with vortioxetine [poster presentation]. British Association Psychopharmacology Summer Meeting 2015, University of Bristol.
Grant Information:
8053-00083B Innovationsfonden
Substance Nomenclature:
3O2K1S3WQV (Vortioxetine)
EC 1.14.14.1 (Cytochrome P-450 CYP2D6)
Entry Date(s):
Date Created: 20210614 Date Completed: 20211125 Latest Revision: 20220907
Update Code:
20240105
PubMed Central ID:
PMC8585800
DOI:
10.1007/s40262-021-01029-7
PMID:
34121163
Czasopismo naukowe
Introduction: Vortioxetine is an antidepressant primarily metabolized by the polymorphic enzyme cytochrome P450 (CYP) 2D6. A population pharmacokinetic (popPK) model of vortioxetine and its CYP2D6-dependent metabolite was recently published.
Objective: The aim of the current study was to assess the predictive performance of the popPK model using vortioxetine concentration measurements from a clinical setting. Furthermore, the study aimed to evaluate the ability of different CYP2D6 phenotype classification systems to provide accurate concentration predictions.
Methods: Overall, 1388 patients receiving vortioxetine treatment were identified from a therapeutic drug monitoring (TDM) database in Oslo, Norway; 334 CYP2D6-genotyped patients with 502 serum concentrations of vortioxetine, analysed by a validated ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) method, were retrospectively included. The performance of the vortioxetine popPK model was tested on the clinical data from the TDM database.
Results: Overall, the model had a good ability to predict vortioxetine concentrations measured in clinical practice, with a slight tendency to overpredict concentrations. Using simulation-based diagnostics, 76% of the prediction-corrected TDM concentrations were within the 90% prediction interval based on 1000 simulated data sets. Prediction-based diagnostics showed the best performance for CYP2D6 poor and ultrarapid metabolizers, with a median prediction error (MDPE) of 12% and 23%, respectively, while the poorest performance was observed for normal metabolizers, with an MDPE of 66%. In the comparison of different CYP2D6 phenotype classification systems, the use of differentiated activity scores for decreased function alleles did not improve the concentration predictions. Grouping the CYP2D6 genotypes into the four conventional phenotype groups provided predictions closest to the TDM measured concentrations.
Conclusion: TDM data provide a unique insight into real-world clinical practice with vortioxetine. The tendency of the popPK model to overpredict vortioxetine concentrations measured in TDM may be attributed to several factors, including poor treatment compliance for some patients and, to a lesser extent, lack of information on patient characteristics and misspecified CYP2D6 alleles. To optimize personalized therapy with vortioxetine, real-world clinical data sets originating from different ethnicities need to be studied in the future.
(© 2021. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies