Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Determination of bupivacaine tissue concentration in human biopsy samples using high-performance liquid chromatography with mass spectrometry.

Tytuł:
Determination of bupivacaine tissue concentration in human biopsy samples using high-performance liquid chromatography with mass spectrometry.
Autorzy:
Istenič S; Core Facility, Helios TBLUS, Domžale, Slovenia.; Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
Cvetko E; Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
Zabret J; Core Facility, Helios TBLUS, Domžale, Slovenia.
Stopar Pintarič T; Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.; Department of Anaesthesiology and Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia.
Umek N; Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
Źródło:
Biomedical chromatography : BMC [Biomed Chromatogr] 2021 Nov; Vol. 35 (11), pp. e5198. Date of Electronic Publication: 2021 Jul 04.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1990- : Chichester : Wiley
Original Publication: London : Heyden & Son, c1986-1990
MeSH Terms:
Bupivacaine/*analysis
Chromatography, High Pressure Liquid/*methods
Mass Spectrometry/*methods
Biopsy ; Bupivacaine/chemistry ; Bupivacaine/isolation & purification ; Humans ; Linear Models ; Muscle, Skeletal/pathology ; Nerve Tissue/pathology ; Reproducibility of Results ; Sensitivity and Specificity
References:
Albrecht, E., & Chin, K. J. (2020). Advances in regional anaesthesia and acute pain management: A narrative review. Anaesthesia, 75, e101-e110.
Balocco, A. L., López, A. M., Kesteloot, C., Horn, J. L., Brichant, J. F., Vandepitte, C., Hadzic, A., & Gautier, P. (2021). Quadratus lumborum block: An imaging study of three approaches. Regional Anesthesia and Pain Medicine, 46, 35-40. https://doi.org/10.1136/rapm-2020-101554.
Cho, S. H., Park, J. A., Zheng, W., Abd El-Aty, A. M., Kim, S. K., Choi, J. M., Yi, H., Cho, S. M., Afifi, N. A., Shim, J. H., Chang, B. J., Kim, J. S., & Shin, H. C. (2017). Quantification of bupivacaine hydrochloride and isoflupredone acetate residues in porcine muscle, beef, milk, egg, shrimp, flatfish, and eel using a simplified extraction method coupled with liquid chromatography-triple quadrupole tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1065-1066, 29-34.
Committee for Medicinal Products for Human Use (CHMP). (2011). Guideline on Bioanalytical Method Validation, EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2**.
Damjanovska, M., Pintaric, T. S., Cvetko, E., & Vlassakov, K. (2018). The ultrasound-guided retrolaminar block: Volume-dependent injectate distribution. Journal of Pain Research, 11, 293-299. https://doi.org/10.2147/JPR.S153660.
Daryanavard, S. M., Jeppsson-Dadoun, A., Andersson, L. I., Hashemi, M., Colmsjö, A., & Abdel-Rehim, M. (2013). Molecularly imprinted polymer in microextraction by packed sorbent for the simultaneous determination of local anesthetics: Lidocaine, ropivacaine, mepivacaine and bupivacaine in plasma and urine samples. Biomedical Chromatography, 27, 1481-1488. https://doi.org/10.1002/bmc.2946.
Elsharkawy, H., Bajracharya, G. R., El-Boghdadly, K., Drake, R. L., & Mariano, E. R. (2019). Comparing two posterior quadratus lumborum block approaches with low thoracic erector spinae plane block: An anatomic study. Regional Anesthesia and Pain Medicine, 44, 549-555. https://doi.org/10.1136/rapm-2018-100147.
Elsharkawy, H., Pawa, A., & Mariano, E. R. (2018). Interfascial plane blocks: Back to basics. Regional Anesthesia and Pain Medicine, 43, 341-346. https://doi.org/10.1097/AAP.0000000000000750.
Foth, H., Schröder, T., Kraus, B., Hering, J. P., Ensink, F. B. M., & Hellige, G. (1996). Myocardial extraction of bupivacaine in anaesthetized sheep and by hearts of sheep and rats in vitro. British Journal of Anaesthesia, 77, 257-264. https://doi.org/10.1093/bja/77.2.257.
George, R., Haywood, A., Khan, S., Radovanovic, M., Simmonds, J., & Norris, R. (2018). Enhancement and suppression of ionization in drug analysis using HPLC-MS/MS in support of therapeutic drug monitoring: A review of current knowledge of its minimization and assessment. Therapeutic Drug Monitoring, 40, 1-8. https://doi.org/10.1097/FTD.0000000000000471.
Golub, M. S., Kaaekuahiwi, M. A., Eisele, P. H., Zhang, H., Jones, A. D., & Eisele, J. H. (1998). Newborn tissue concentrations of bupivacaine following maternal epidural administration during labor in Guinea pigs. Biology of the Neonate, 74, 304-313. https://doi.org/10.1159/000014038.
Gough, M. R., Mayhew, I. G., & Munroe, G. A. (2002). Diffusion of mepivacaine between adjacent synovial structures in the horse. Part 1: Forelimb foot and carpus. Equine Veterinary Journal, 34, 80-84. https://doi.org/10.2746/042516402776181097.
Gross, A. S., Nicolay, A., & Eschalier, A. (1999). Simultaneous analysis of ketamine and bupivacaine in plasma by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 728, 107-115. https://doi.org/10.1016/S0378-4347(99)00097-3.
Helander, E. M., Kaye, A. J., Eng, M. R., Emelife, P. I., Motejunas, M. W., Bonneval, L. A., Terracciano, J. A., Cornett, E. M., & Kaye, A. D. (2019). Regional nerve blocks-Best practice strategies for reduction in complications and comprehensive review. Current Pain and Headache Reports, 23, 43. https://doi.org/10.1007/s11916-019-0782-0.
Högberg, C. J., Maliniak, A., & Lyubartsev, A. P. (2007). Dynamical and structural properties of charged and uncharged lidocaine in a lipid bilayer. Biophysical Chemistry, 125, 416-424. https://doi.org/10.1016/j.bpc.2006.10.005.
Jordana, M., Martens, A., Duchateau, L., Haspeslagh, M., Vanderperren, K., Oosterlinck, M., & Pille, F. (2016). Diffusion of mepivacaine to adjacent synovial structures after intrasynovial analgesia of the digital flexor tendon sheath. Equine Veterinary Journal, 48, 326-330. https://doi.org/10.1111/evj.12447.
Kaplan, M. R., Meyer-Franke, A., Lambert, S., Bennett, V., Duncan, I. D., Levinson, S. R., & Barres, B. A. (1997). Induction of sodium channel clustering by oligodendrocytes. Nature, 386, 724-728. https://doi.org/10.1038/386724a0.
Kavcic, H., Umek, N., Pregeljc, D., Vintar, N., & Mavri, J. (2021). Local anesthetics transfer across the membrane: Reproducing Octanol-water partition coefficients by solvent reaction field methods. Acta Chimica Slovenica, 68, 426-432. https://doi.org/10.17344/acsi.2020.6513.
Keegan, K. G., Wilson, D. A., Kreeger, J. M., Ellersieck, M. R., Kuo, K. C., & Li, Z. (1996). Local distribution of mepivacaine after distal interphalangeal joint injection in horses. American Journal of Veterinary Research, 57, 422-426.
Lindberg, R. L. P., Kanto, J. H., & Pihlajamäki, K. K. (1986). Simultaneous determination of bupivacaine and its two metabolites, desbutyl- and 4′-hydroxybupivacaine, in human serum and urine. Journal of Chromatography B: Biomedical Sciences and Applications, 383, 357-364. https://doi.org/10.1016/S0378-4347(00)83481-7.
Lindberg, R. L. P., & Pihlajamäki, K. K. (1984). High-performance liquid chromatographic determination of bupivacaine in human serum. Journal of Chromatography B: Biomedical Sciences and Applications, 309, 369-374. https://doi.org/10.1016/0378-4347(84)80044-4.
Lombardo-Agüí, M., Cruces-Blanco, C., & García-Campaña, A. M. (2009). Capillary zone electrophoresis with diode-array detection for analysis of local anaesthetics and opium alkaloids in urine samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 877, 833-836.
Ma, M., Kang, S., Zhao, Q., Chen, B., & Yao, S. (2006). Liquid-phase microextraction combined with high-performance liquid chromatography for the determination of local anaesthetics in human urine. Journal of Pharmaceutical and Biomedical Analysis, 40, 128-135. https://doi.org/10.1016/j.jpba.2005.06.023.
Markova, L., Umek, N., Horvat, S., Hadžić, A., Kuroda, M., Pintarič, T. S., Mrak, V., & Cvetko, E. (2020). Neurotoxicity of bupivacaine and liposome bupivacaine after sciatic nerve block in healthy and streptozotocin-induced diabetic mice. BMC Veterinary Research, 16, 16, 247. https://doi.org/10.1186/s12917-020-02459-4.
McDonald, S., Faibushevich, A. A., Garnick, S., Mclaughlin, K., & Lunte, C. (2002). Determination of local tissue concentrations of bupivacaine released from biodegradable microspheres and the effect of vasoactive compounds on bupivacaine tissue clearance studied by microdialysis sampling. Pharmaceutical Research, 19, 1745-1752. https://doi.org/10.1023/A:1020725917197.
Mijovski, G., Podbregar, M., Kšela, J., Jenko, M., & Šoštarič, M. (2020). Effectiveness of wound infusion of 0.2% ropivacaine by patient control analgesia pump after minithoracotomy aortic valve replacement: A randomized, double-blind, placebo-controlled trial. BMC Anesthesiology, 20, 172. https://doi.org/10.1186/s12871-020-01093-9.
Murillo, L., Costa, J., & Salvá, P. (1993). Determination of bupivacaine in human plasma by hplc. Journal of Liquid Chromatography, 16, 3509-3514. https://doi.org/10.1080/10826079308019704.
Panuwet, P., Hunter, R. E., D'Souza, P. E., Chen, X., Radford, S. A., Cohen, J. R., Marder, M. E., Kartavenka, K., Ryan, P. B., & Barr, D. B. (2016). Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: Advancing biomonitoring. Critical Reviews in Analytical Chemistry, 46, 93-105. https://doi.org/10.1080/10408347.2014.980775.
Scherpenisse, P., & Bergwerff, A. A. (2007). Determination of residues of tricaine in fish using liquid chromatography tandem mass spectrometry. Analytica Chimica Acta, 586, 407-410. https://doi.org/10.1016/j.aca.2006.11.008.
Siddareddy, K., Reddy, M. A. U., Suresh, B., & Sreeramulu, J. (2017). Development and validation of analytical method for simultaneous estimation of bupivacaine and meloxicam in human plasma using UPLC-MS/MS. Pharmaceutical Methods, 9, 2-8. https://doi.org/10.5530/phm.2018.1.2.
Sondekoppam, R. V., & Tsui, B. C. H. (2019). “Minimally invasive” regional anesthesia and the expanding use of interfascial plane blocks: The need for more systematic evaluation. Canadian Journal of Anesthesia, 66, 855-863. https://doi.org/10.1007/s12630-019-01400-0.
Strichartz, G. R., Sanchez, V., Arthur, G. R., Chafetz, R., & Martin, D. (1990). Fundamental properties of local anesthetics. II. Measured octanol:Buffer partition coefficients and pKa values of clinically used drugs. Anesthesia and Analgesia, 71, 158-170. https://doi.org/10.1213/00000539-199008000-00008.
Tahraoui, A., Watson, D. G., Skellern, G. G., Hudson, S. A., Petrie, P., & Faccenda, K. (1996). Comparative study of the determination of bupivacaine in human plasma by gas chromatography-mass spectrometry and high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 15, 251-257. https://doi.org/10.1016/0731-7085(96)01774-8.
Tamura, T., Yokota, S., Ito, S., Shibata, Y., & Nishiwaki, K. (2019). Local anesthetic spread into the paravertebral space with two types of quadratus lumborum blocks: A crossover volunteer study. Journal of Anesthesia, 33, 26-32. https://doi.org/10.1007/s00540-018-2578-5.
Tsuchiya, H., & Mizogami, M. (2013). Interaction of local anesthetics with biomembranes consisting of phospholipids and cholesterol: Mechanistic and clinical implications for anesthetic and cardiotoxic effects. Anesthesiology Research and Practice, 2013, 297141.
Wang, L. Q., Zeng, Z. L., Su, Y. J., Zhang, G. K., Zhong, X. L., Liang, Z. P., & He, L. M. (2012). Matrix effects in analysis of β-agonists with LC-MS/MS: Influence of analyte concentration, sample source, and SPE type. Journal of Agricultural and Food Chemistry, 60, 6359-6363. https://doi.org/10.1021/jf301440u.
Wulf, H., Winckler, K., Maier, C., & Heinzow, B. (1988). Pharmacokinetics and protein binding of bupivacaine in postoperative epidural analgesia. Acta Anaesthesiologica Scandinavica, 32, 530-534. https://doi.org/10.1111/j.1399-6576.1988.tb02780.x.
Xia, Y. Q., & Jemal, M. (2009). Phospholipids in liquid chromatography/mass spectrometry bioanalysis: Comparison of three tandem mass spectrometric techniques for monitoring plasma phospholipids, the effect of mobile phase composition on phospholipids elution and the association of phos. Rapid Communications in Mass Spectrometry, 23, 2125-2138. https://doi.org/10.1002/rcm.4121.
Zel, J., Hadzic, A., Cvetko, E., Seliskar, A., Damjanovska, M., Kuroda, M. M. M., Sega Jazbec, S., & Stopar Pintaric, T. (2018). Neurological and histological outcomes after subarachnoid injection of a liposomal bupivacaine suspension in pigs: A pilot study. British Journal of Anaesthesia, 122, 379-387.
Grant Information:
Grant No: P3-0043 Slovenian Research Agency; Tertiary funding University Medical Center Ljubljana
Contributed Indexing:
Keywords: HPLC-MS; biopsy sample; bupivacaine; human tissue; lidocaine
Substance Nomenclature:
Y8335394RO (Bupivacaine)
Entry Date(s):
Date Created: 20210614 Date Completed: 20211116 Latest Revision: 20211116
Update Code:
20240105
DOI:
10.1002/bmc.5198
PMID:
34121212
Czasopismo naukowe
In the present study, we developed a simple and rapid analytical method for the quantification of bupivacaine hydrochloride in human biopsy samples of adipose, muscle, neural, connective and cartilage tissue using liquid chromatography-mass spectrometry. Anesthetics were extracted from the tissue samples using 0.1% formic acid in acetonitrile for protein denaturation and hexane for removal of lipophilic impurities. Analytes were separated adequately on Phenomenex Luna Omega polar C18 column using a gradient mobile phase 0.1% formic acid in water and 0.1% formic acid in acetonitrile. The lower limits of quantification were ≤ 97 ng g -1 tissue for all studied tissues. Intra-day recoveries were between 48.2% and 82.1% with relative standard deviations (RSDs) between 1.47% and 14.28%, whereas inter-day recoveries were between 52.2% and 77.6% with RSDs between 2.98% and 14.79%. The calibration curve showed a linear fit with R 2 higher than 0.99 in the concentration range from 0.16 to 100 μg g -1 . Lidocaine hydrochloride was tested as internal standard because its recoveries and matrix effects were comparable to bupivacaine hydrochloride. Post-analytical corrections of measured bupivacaine tissue concentrations can accordingly be made based on recovery of lidocaine as internal standard, with recoveries between 51.2% and 86.9% and RSDs between 1.99% and 16.88%. The developed method could be used to study time-dependent spread of bupivacaine locally or to more distant locations across tissue barriers.
(© 2021 John Wiley & Sons, Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies