Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

The successful implementation of the Navio robotic technology required 29 cases.

Tytuł :
The successful implementation of the Navio robotic technology required 29 cases.
Autorzy :
Bell C; Rothman Orthopaedic Institute, 2500 English Creek Ave., Building 1300, Egg Harbor Township, NJ, 08234, USA.
Grau L; Riverside Medical Group, 201 Route 17, Suite 1202, Rutherford, NJ, 07070, USA.
Orozco F; Orozco Orthopedics, 1999 New Road, Suite B, Linwood, NJ, 08221, USA.
Ponzio D; Rothman Orthopaedic Institute, 2500 English Creek Ave., Building 1300, Egg Harbor Township, NJ, 08234, USA.
Post Z; Rothman Orthopaedic Institute, 2500 English Creek Ave., Building 1300, Egg Harbor Township, NJ, 08234, USA.
Czymek M; Rothman Orthopaedic Institute, 2500 English Creek Ave., Building 1300, Egg Harbor Township, NJ, 08234, USA. .
Ong A; Rothman Orthopaedic Institute, 2500 English Creek Ave., Building 1300, Egg Harbor Township, NJ, 08234, USA.
Pokaż więcej
Źródło :
Journal of robotic surgery [J Robot Surg] 2021 Jun 19. Date of Electronic Publication: 2021 Jun 19.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: London : Springer
References :
Kim YH, Yoon SH, Park JW (2020) Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? a randomized, controlled trial. Clin Orthop Relat Res 478:266–275. https://doi.org/10.1097/CORR.0000000000000916. (PMID: 10.1097/CORR.000000000000091631389889)
Jacofsky DJ, Allen M (2016) Robotics in arthroplasty: a comprehensive review. J Arthroplasty 31:2353–2363. https://doi.org/10.1016/j.arth.2016.05.026. (PMID: 10.1016/j.arth.2016.05.02627325369)
Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL (2013) Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res 471:118–126. (PMID: 10.1007/s11999-012-2407-3)
Song EK, Seon JK, Park SJ, Jung WB, Park HW, Lee GW (2011) Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 19:1069–1076. (PMID: 10.1007/s00167-011-1400-9)
Liow MH, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL (2014) Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis A prospective randomized study. J Arthroplasty 29:2373–2377. (PMID: 10.1016/j.arth.2013.12.010)
Bellemans J, Vandenneucker H, Vanlauwe J (2007) Robot-assisted total knee arthroplasty. Clin Orthop Relat Res 464:111–116. (PMID: 10.1097/BLO.0b013e318126c0c0)
Decking J, Theis C, Achenbach T, Roth E, Nafe B, Eckardt A (2004) Robotic total knee arthroplasty: the accuracy of CT-based component placement. Acta Orthop Scand 75:573–579. (PMID: 10.1080/00016470410001448)
Park SE, Lee CT (2007) Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplasty 22:1054–1059. (PMID: 10.1016/j.arth.2007.05.036)
Lonner JK, Fillingham YA (2018) Pros and cons: a balanced view of robotics in knee arthroplasty. J Arthroplasty 33:2007–2013. (PMID: 10.1016/j.arth.2018.03.056)
Khlopas A, Sodhi N, Sultan AA et al (2018) Robotic arm – assisted total knee arthroplasty. J Arthroplasty 33:2002–2006. (PMID: 10.1016/j.arth.2018.01.060)
Hampp EL, Scholl LY, Prieto M, Chughtai M, Chang TC, Abbasi A et al (2018) Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy to plan compared to manual technique. Surg Technol Int 32(3):239–250.
Yang HY, Seon JK, Shin YJ, Lim HA, Song EK (2017) Robotic total knee arthroplasty with a cruciate-retaining implant: a 10-year follow-up study. Clin Orthop Surg 9:169. https://doi.org/10.4055/cios.2017.9.2.169. (PMID: 10.4055/cios.2017.9.2.169285672185435654)
Sodhi N, Khlopas A, Piuzzi N, Sultan A, Marchand R, Malkani A et al (2018) The learning curve associated with robotic total knee arthroplasty. J Knee Surg 31:17–21. https://doi.org/10.1055/s-0037-1608809. (PMID: 10.1055/s-0037-160880929166683)
Fleischman A, Lutz R, Kafshgari HV, Orozco F, Hozack W, Chen A (2018) Time-related learning curve of robotic-arm assisted total knee arthroplasty. AAOS; Annu Meet n.d. 27(4):1132–1141.
Burnett RSJ, Barrack RL (2013) Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop Relat Res 471:264–276. (PMID: 10.1007/s11999-012-2528-8)
Chen AF, Kazarian GS, Jessop GW, Makhdom A (2018) Current Concepts Review: Robotic technology in orthopaedic surgery. J Bone Joint Surg Am 100:1984–1992. (PMID: 10.2106/JBJS.17.01397)
Naziri Q, Cusson BC, Chaudhri M et al (2019) Making the transition from traditional to robotic-arm assisted TKA: what to expect? A single-surgeon comparative analysis of the first 40 consecutive cases. J Orthopaedics 16:364–368. (PMID: 10.1016/j.jor.2019.03.010)
Gregori A, Picard F, Bellemans J, Lonner JH, Marquez R, Smith J, et al (2014) The learning curve of a novel handheld robotic system for unicondylar knee arthroplasty, vol 96-B, ISSUE SUPP_16. 14th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery, Milan, Italy.
Agarwal N, To K, McDonnell S, Khan W (2020) Clinical and radiological outcomes in robotic-assisted total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty 35:3393-3409.e2. https://doi.org/10.1016/j.arth.2020.03.005. (PMID: 10.1016/j.arth.2020.03.00532234326)
Kayani B, Konan S, Huq SS et al (2019) Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sport Traumatol Arthrosc 27:1132–1141. https://doi.org/10.1007/s00167-018-5138-5. (PMID: 10.1007/s00167-018-5138-5)
Contributed Indexing :
Keywords: Implementation; Learning curve; Robotic-assisted; Total knee arthroplasty
Entry Date(s) :
Date Created: 20210619 Latest Revision: 20210619
Update Code :
20210623
DOI :
10.1007/s11701-021-01254-z
PMID :
34146231
Czasopismo naukowe
Robotic-assisted total knee arthroplasty (RA-TKA) has potential benefits of improved restoration of mechanical alignment, accuracy of bony resection, and balancing. The purpose of this study was to determine the number of cases necessary for a single surgeon to achieve a constant, steady-state surgical time. The secondary purpose was to identify which steps demonstrated the most time reduced. This was a prospective study assessing intraoperative time for 60 RA-TKA with the Navio surgical system. Overall arthroplasty time and duration for each step were recorded. Statistical analysis included a nonlinear regression and survival regression. Successful implementation required 29 cases to achieve a steady-state. The average time decreased from 41.8 min for the first cohort to 31.1 min for the last cohort, a 26% decrease. The step with the greatest reduction was the "Review of Intraoperative Plan" with a reduction of 2.1 min. This study demonstrates surgical times averaging below 60 min and a learning curve that is complete in 29 cases with the surgeon reporting a high level of confidence with the system at 10 cases. Though Navio assisted TKA showed a significantly slower operative time, we are hopeful that future generations of robotic technology will be more efficiently implemented by surgeons.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies