Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification of a phage-derived depolymerase specific for KL64 capsule of Klebsiella pneumoniae and its anti-biofilm effect.

Tytuł:
Identification of a phage-derived depolymerase specific for KL64 capsule of Klebsiella pneumoniae and its anti-biofilm effect.
Autorzy:
Li M; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Li P; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Chen L; Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated To Soochow University, Zhangjiagang, China.
Guo G; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Xiao Y; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Chen L; Center for Discovery and Innovation, Hackensack-Meridian Health, Nutley, NJ, USA.; Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA.
Du H; Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
Zhang W; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China. .; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .
Źródło:
Virus genes [Virus Genes] 2021 Oct; Vol. 57 (5), pp. 434-442. Date of Electronic Publication: 2021 Jun 22.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Boston Ma : Kluwer Academic
Original Publication: Boston, USA : M. Nijhoff, 1987-
MeSH Terms:
Bacteriophages/*genetics
Genome, Viral/*genetics
Glycoside Hydrolases/*genetics
Klebsiella pneumoniae/*genetics
Bacteriophages/enzymology ; Bacteriophages/pathogenicity ; Biofilms/growth & development ; Carbapenem-Resistant Enterobacteriaceae/genetics ; Carbapenem-Resistant Enterobacteriaceae/virology ; Caudovirales/enzymology ; Caudovirales/genetics ; Caudovirales/pathogenicity ; Humans ; Klebsiella pneumoniae/pathogenicity ; Klebsiella pneumoniae/virology ; Viral Proteins/genetics
References:
Bengoechea JA, Sa Pessoa J (2019) Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microb Rev 43(2):123–144. https://doi.org/10.1093/femsre/fuy043. (PMID: 10.1093/femsre/fuy043)
Pitout JD, Nordmann P, Poirel L (2015) Carbapenemase-producing klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59(10):5873–5884. https://doi.org/10.1128/AAC.01019-15. (PMID: 10.1128/AAC.01019-15261694014576115)
Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, Chan EW, Shu L, Yu J, Zhang R, Chen S (2018) A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 18(1):37–46. https://doi.org/10.1016/S1473-3099(17)30489-9. (PMID: 10.1016/S1473-3099(17)30489-928864030)
Xu L, Sun X, Ma X (2017) Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 16(1):18. https://doi.org/10.1186/s12941-017-0191-3. (PMID: 10.1186/s12941-017-0191-3283561095371217)
Li B, Zhao Y, Liu C, Chen Z, Zhou D (2014) Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 9(9):1071–1081. https://doi.org/10.2217/fmb.14.48. (PMID: 10.2217/fmb.14.4825340836)
Wu MC, Lin TL, Hsieh PF, Yang HC, Wang JT (2011) Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS ONE 6(8):e23500. https://doi.org/10.1371/journal.pone.0023500. (PMID: 10.1371/journal.pone.0023500218581443155550)
Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40(11):2517–2522. https://doi.org/10.1128/AAC.40.11.2517. (PMID: 10.1128/AAC.40.11.25178913456163567)
Ørskov I, Fife-Asbury MA (1977) New Klebsiella capsular antigen K82 and the deletion of five of those previously assigned. Int J Syst Bacteriol 27:386–387. (PMID: 10.1099/00207713-27-4-386)
Pan YJ, Fang HC, Yang HC, Lin TL, Hsieh PF, Tsai FC, Keynan Y, Wang JT (2008) Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol 46(7):2231–2240. https://doi.org/10.1128/JCM.01716-07. (PMID: 10.1128/JCM.01716-07185089352446917)
Hsu CR, Lin TL, Pan YJ, Hsieh PF, Wang JT (2013) Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS ONE 8(8):e70092. https://doi.org/10.1371/journal.pone.0070092. (PMID: 10.1371/journal.pone.0070092239363793732264)
Pan YJ, Lin TL, Chen YH, Hsu CR, Hsieh PF, Wu MC, Wang JT (2013) Capsular types of Klebsiella pneumoniae revisited by wzc sequencing. PLoS ONE 8(12):e80670. https://doi.org/10.1371/journal.pone.0080670. (PMID: 10.1371/journal.pone.0080670243490113857182)
Pan YJ, Lin TL, Lin YT, Su PA, Chen CT, Hsieh PF, Hsu CR, Chen CC, Hsieh YC, Wang JT (2015) Identification of capsular types in carbapenem-resistant Klebsiella pneumoniae strains by wzc sequencing and implications for capsule depolymerase treatment. Antimicrob Agents Chemother 59(2):1038–1047. https://doi.org/10.1128/AAC.03560-14. (PMID: 10.1128/AAC.03560-14254510474335867)
Pan YJ, Lin TL, Chen CC, Tsai YT, Cheng YH, Chen YY, Hsieh PF, Lin YT, Wang JT (2017) Klebsiella Phage phik64–1 encodes multiple depolymerases for multiple host capsular types. J Virol. https://doi.org/10.1128/JVI.02457-16. (PMID: 10.1128/JVI.02457-16291919865730758)
Yang Q, Jia X, Zhou M, Zhang H, Yang W, Kudinha T, Xu Y (2020) Emergence of ST11-K47 and ST11-K64 hypervirulent carbapenem-resistant Klebsiella pneumoniae in bacterial liver abscesses from China: a molecular, biological, and epidemiological study. Emerg Microbes Infect 9(1):320–331. https://doi.org/10.1080/22221751.2020.1721334. (PMID: 10.1080/22221751.2020.1721334320379757034084)
Li M, Guo M, Chen L, Zhu C, Xiao Y, Li P, Guo H, Chen L, Zhang W, Du H (2020) Isolation and characterization of novel lytic bacteriophages infecting epidemic carbapenem-resistant Klebsiella pneumoniae strains. Front Microbiol 11:1554. https://doi.org/10.3389/fmicb.2020.01554. (PMID: 10.3389/fmicb.2020.01554327931337385232)
Koh TH, Cao D, Shan QY, Bacon A, Hsu LY, Ooi EE (2013) Acquired carbapenemases in Enterobactericeae in Singapore, 1996–2012. Pathology 45(6):600–603. https://doi.org/10.1097/PAT.0b013e3283650b1e. (PMID: 10.1097/PAT.0b013e3283650b1e24018814)
Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C, Lemmer D, de Man T, Rasheed JK, Engelthaler DM, Keim P, Limbago BM (2015) Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 klebsiella pneumoniae pandemic. PLoS ONE 10(7):e0133727. https://doi.org/10.1371/journal.pone.0133727. (PMID: 10.1371/journal.pone.0133727261963844510304)
Cryz SJ Jr, Mortimer PM, Mansfield V, Germanier R (1986) Seroepidemiology of Klebsiella bacteremic isolates and implications for vaccine development. J Clin Microbiol 23(4):687–690. https://doi.org/10.1128/JCM.23.4.687-690.1986. (PMID: 10.1128/JCM.23.4.687-690.19863517058362817)
Huang YH, Chou SH, Liang SW, Ni CE, Lin YT, Huang YW, Yang TC (2018) Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan. J Antimicrob Chemother 73(8):2039–2046. https://doi.org/10.1093/jac/dky164. (PMID: 10.1093/jac/dky16429800340)
Wu Y, Wang R, Xu M, Liu Y, Zhu X, Qiu J, Liu Q, He P, Li Q (2019) A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant klebsiella pneumoniae via biofilm degradation. Front Microbiol 10:2768. https://doi.org/10.3389/fmicb.2019.02768. (PMID: 10.3389/fmicb.2019.02768318499056901502)
Pan YJ, Lin TL, Chen YY, Lai PH, Tsai YT, Hsu CR, Hsieh PF, Lin YT, Wang JT (2019) Identification of three podoviruses infecting Klebsiella encoding capsule depolymerases that digest specific capsular types. Microb Biotechnol 12(3):472–486. https://doi.org/10.1111/1751-7915.13370. (PMID: 10.1111/1751-7915.13370307066546465236)
Lin TL, Hsieh PF, Huang YT, Lee WC, Tsai YT, Su PA, Pan YJ, Hsu CR, Wu MC, Wang JT (2014) Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. J Infect Dis 210(11):1734–1744. https://doi.org/10.1093/infdis/jiu332. (PMID: 10.1093/infdis/jiu33225001459)
Majkowska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B, Briers Y, Drulis-Kawa Z (2018) Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol 9:2517. https://doi.org/10.3389/fmicb.2018.02517. (PMID: 10.3389/fmicb.2018.02517304055756205948)
Wang C, Li P, Niu W, Yuan X, Liu H, Huang Y, An X, Fan H, Zhangxiang L, Mi L, Zheng J, Liu Y, Tong Y, Mi Z, Bai C (2019) Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Res Microbiol 170(3):156–164. https://doi.org/10.1016/j.resmic.2019.01.003. (PMID: 10.1016/j.resmic.2019.01.00330716390)
Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. https://doi.org/10.1038/nrmicro2415. (PMID: 10.1038/nrmicro241520676145)
Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev MMBR 64(4):847–867. https://doi.org/10.1128/mmbr.64.4.847-867.2000. (PMID: 10.1128/mmbr.64.4.847-867.200011104821)
Clegg S, Murphy CN (2016) Epidemiology and virulence of Klebsiella pneumoniae. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.UTI-0005-2012. (PMID: 10.1128/microbiolspec.UTI-0005-201226999397)
Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59(3):227–238. https://doi.org/10.1111/j.1574-695X.2010.00665.x. (PMID: 10.1111/j.1574-695X.2010.00665.x20412300)
Jia MHX, Sun WZ, Rao XC, Cong YG, Hu FQ (2008) Cloning and expression of polysaccharide depolymerase gene from Pseudomonas aeruginosa bacteriophage PaP3 and its biologic activity. Interscience Publishers, New York.
Sambrook J, Russell DW (2006) Precipitation of bacteriophage lambda particles from large-scale lysates. CSH Protoc. https://doi.org/10.1101/pdb.prot3966. (PMID: 10.1101/pdb.prot396622485923)
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021. (PMID: 10.1089/cmb.2012.00212250659922506599)
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75. (PMID: 10.1186/1471-2164-9-75182612382265698)
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053. (PMID: 10.1038/nprot.2015.0532595023725950237)
Mirzaei MK, Nilsson AS (2015) Correction: isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10(5):e0127606. https://doi.org/10.1371/journal.pone.0127606. (PMID: 10.1371/journal.pone.0127606259508304423996)
Domenico P, Schwartz S, Cunha BA (1989) Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect Immunity 57(12):3778–3782. https://doi.org/10.1128/IAI.57.12.3778-3782.1989. (PMID: 10.1128/IAI.57.12.3778-3782.1989)
Jia MHX, Sun WZ, Rao XC, Cong YG, Hu FQ (2019) Cloning and expression of polysaccharide depolymerase gene from Pseudomonas aeruginosa bacteriophage PaP3 and its biologic activity. J Fourth Mil Med Univ 02:123–126.
Li Q, Fu Y, He Y, Zhang Y, Qian Y, Yu Y, Yao H, Lu C, Zhang W (2017) Fibronectin-/fibrinogen-binding protein (FBPS) is not a critical virulence factor for the Streptococcus suis serotype 2 strain ZY05719. Vet Microbiol 208:38–46. https://doi.org/10.1016/j.vetmic.2017.07.010. (PMID: 10.1016/j.vetmic.2017.07.01028888647)
Gu B, Bi R, Cao X, Qian H, Hu R, Ma P (2019) Clonal dissemination of KPC-2-producing Klebsiella pneumoniae ST11 and ST48 clone among multiple departments in a tertiary teaching hospital in Jiangsu Province. China Ann Transl Med 7(23):716. https://doi.org/10.21037/atm.2019.12.01. (PMID: 10.21037/atm.2019.12.0132042732)
Liu Y, Leung SSY, Huang Y, Guo Y, Jiang N, Li P, Chen J, Wang R, Bai C, Mi Z, Gao Z (2020) Identification of two depolymerases from phage IME205 and their antivirulent functions on K47 capsule of Klebsiella pneumoniae. Front Microbiol 11:218. https://doi.org/10.3389/fmicb.2020.00218. (PMID: 10.3389/fmicb.2020.00218321171927034173)
Shi Y, Chen Y, Yang Z, Zhang Y, You B, Liu X, Chen P, Liu M, Zhang C, Luo X, Chen Y, Yuan Z, Chen J, Gong Y, Peng Y (2020) Characterization and genome sequencing of a novel T7-like lytic phage, kpssk3, infecting carbapenem-resistant Klebsiella pneumoniae. Arch Virol 165(1):97–104. https://doi.org/10.1007/s00705-019-04447-y. (PMID: 10.1007/s00705-019-04447-y31734749)
Tan D, Zhang Y, Cheng M, Le S, Gu J, Bao J, Qin J, Guo X, Zhu T (2019) Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages. Viruses 11(11):1080. https://doi.org/10.3390/v11111080. (PMID: 10.3390/v111110806893751)
Li M, Xiao Y, Li P, Wang Z, Qi W, Qi Z, Chen L, Du H, Zhang W (2020) Characterization and genome analysis of Klebsiella phage P509, with lytic activity against clinical carbapenem-resistant Klebsiella pneumoniae of the KL64 capsular type. Arch Virol 165(12):2799–2806. https://doi.org/10.1007/s00705-020-04822-0. (PMID: 10.1007/s00705-020-04822-032989574)
Knecht LE, Veljkovic M, Fieseler L (2019) Diversity and function of phage encoded depolymerases. Front Microbiol 10:2949. https://doi.org/10.3389/fmicb.2019.02949. (PMID: 10.3389/fmicb.2019.0294931998258)
Bansal S, Harjai K, Chhibber S (2015) Aeromonas punctata derived depolymerase improves susceptibility of Klebsiella pneumoniae biofilm to gentamicin. BMC Microbiol 15:119. https://doi.org/10.1186/s12866-015-0455-z. (PMID: 10.1186/s12866-015-0455-z260630524461996)
Olsen NMC, Thiran E, Hasler T, Vanzieleghem T, Belibasakis GN, Mahillon J, Loessner MJ, Schmelcher M (2018) Synergistic removal of static and dynamic staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses 10(8):438. https://doi.org/10.3390/v10080438. (PMID: 10.3390/v100804386116285)
Mi L, Liu Y, Wang C, He T, Gao S, Xing S, Huang Y, Fan H, Zhang X, Yu W, Mi Z, Tong Y, Bai C, Han F (2019) Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 55(3):394–405. https://doi.org/10.1007/s11262-019-01660-4. (PMID: 10.1007/s11262-019-01660-430937696)
Mushtaq N, Redpath MB, Luzio JP, Taylor PW (2005) Treatment of experimental Escherichia coli infection with recombinant bacteriophage-derived capsule depolymerase. J Antimicrob Chemother 56(1):160–165. https://doi.org/10.1093/jac/dki177. (PMID: 10.1093/jac/dki17715914489)
Maciejewska B, Olszak T, Drulis-Kawa Z (2018) Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 102(6):2563–2581. https://doi.org/10.1007/s00253-018-8811-1. (PMID: 10.1007/s00253-018-8811-1294421695847195)
Grant Information:
U1803109 National Natural Science Foundation of China
Contributed Indexing:
Keywords: Bacteriophages; Biofilm; Capsular type; Carbapenem-resistant; Depolymerase; Klebsiella pneumoniae
Substance Nomenclature:
0 (Viral Proteins)
EC 3.2.1.- (Glycoside Hydrolases)
EC 3.2.1.87 (capsular-polysaccharide galactohydrolase)
Entry Date(s):
Date Created: 20210622 Date Completed: 20211001 Latest Revision: 20211001
Update Code:
20240105
DOI:
10.1007/s11262-021-01847-8
PMID:
34156584
Czasopismo naukowe
The increasing prevalence of Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a serious threat to global health. Phages and phage-derived enzymes gained increasing attention for controling CRKP infections. In this study, a lytic phage P510 infecting KL64 type K. pneumoniae was isolated and characterized. Whole genome analysis and electron microscopy analysis showed that phage P510 belonged to genus Przondovirus, family Autographiviridae, the order Caudovirales. The tail fiber protein of the phage was predicted to encode capsule depolymerase. Further analysis demonstrated that recombinant depolymerase P510dep had polysaccharide-degrading activity against KL64-types capsule of K. pneumoniae, and its lysis spectrum matched to host range of phage P510. We also demonstrated that the recombinant depolymerase was able to significantly inhibit biofilm formation. The discovery of the phage-derived depolymerase lays the foundation for controlling the spread of CRKPs.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies