Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust pre-existing T-cell immunity in unexposed individuals.

Tytuł:
Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust pre-existing T-cell immunity in unexposed individuals.
Autorzy:
Mahajan S; MedGenome, Bangalore, India.
Kode V; MedGenome, Foster City, USA.
Bhojak K; MedGenome, Bangalore, India.
Karunakaran C; MedGenome, Bangalore, India.
Lee K; MedGenome, Foster City, USA.
Manoharan M; MedGenome, Bangalore, India.
Ramesh A; MedGenome, Bangalore, India.
Hv S; MedGenome, Bangalore, India.
Srivastava A; MedGenome, Bangalore, India.
Sathian R; MedGenome, Bangalore, India.
Khan T; MedGenome, Foster City, USA.
Kumar P; MedGenome, Bangalore, India.
Gupta R; MedGenome, Bangalore, India.
Chakraborty P; MedGenome, Foster City, USA. .
Chaudhuri A; MedGenome, Foster City, USA. .
Źródło:
Scientific reports [Sci Rep] 2021 Jun 23; Vol. 11 (1), pp. 13164. Date of Electronic Publication: 2021 Jun 23.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Immunodominant Epitopes*
CD8-Positive T-Lymphocytes/*immunology
COVID-19/*immunology
Epitopes, T-Lymphocyte/*immunology
Spike Glycoprotein, Coronavirus/*immunology
Algorithms ; Clone Cells ; Gene Expression ; Humans ; Lymphocyte Activation ; Receptors, Antigen, T-Cell/immunology ; SARS-CoV-2
References:
Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 20(6), 363–374 (2020). (PMID: 3234609310.1038/s41577-020-0311-8)
Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2, 2 (2020).
Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 20(6), 355–362 (2020). (PMID: 3237690110.1038/s41577-020-0331-47201395)
Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369(6508), 1210–1220 (2020). (PMID: 32788292766531210.1126/science.abc6261)
Ballow, M. & Haga, C. L. Why do some people develop serious COVID-19 disease after infection, while others only exhibit mild symptoms?. J. Allergy Clin. Immunol. Pract. 2, 2 (2021).
Blanco-Melo, D. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;Pre-print.
Schmidt, M. E. & Varga, S. M. The CD8 T cell response to respiratory virus infections. Front. Immunol. 9, 678 (2018). (PMID: 2968667310.3389/fimmu.2018.006785900024)
Taylor, P. M. & Askonas, B. A. Influenza nucleoprotein-specific cytotoxic T-cell clones are protective in vivo. Immunology 58(3), 417–420 (1986). (PMID: 24261851453480)
Askonas, B. A., Taylor, P. M. & Esquivel, F. Cytotoxic T cells in influenza infection. Ann. N. Y. Acad. Sci. 532, 230–237 (1988). (PMID: 284584510.1111/j.1749-6632.1988.tb36342.x)
Graham, B. S., Bunton, L. A., Wright, P. F. & Karzon, D. T. Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J. Clin. Invest. 88(3), 1026–1033 (1991). (PMID: 190935010.1172/JCI115362295511)
Hall, C. B. et al. Respiratory syncytial viral infection in children with compromised immune function. N. Engl. J. Med. 315(2), 77–81 (1986). (PMID: 372480210.1056/NEJM198607103150201)
Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 181(7), 1489–1501 (2020). (PMID: 32473127723790110.1016/j.cell.2020.05.015)
Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2, 2 (2020).
Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol. 5(48), 2 (2020). (PMID: 10.1126/sciimmunol.abd2071)
Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2, 2 (2020).
Lipsitch, M., Grad, Y. H., Sette, A. & Crotty, S. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat. Rev. Immunol. 20(11), 709–713 (2020). (PMID: 3302428110.1038/s41577-020-00460-4)
Vita, R. et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 47(D1), D339–D343 (2019). (PMID: 10.1093/nar/gky100630357391)
Nielsen, M. et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12(5), 1007–1017 (2003). (PMID: 12717023232387110.1110/ps.0239403)
Arora, J. et al. HIV peptidome-wide association study reveals patient-specific epitope repertoires associated with HIV control. Proc. Natl. Acad. Sci. U.S.A. 116(3), 944–949 (2019). (PMID: 3060246010.1073/pnas.18125481166338868)
Channappanavar, R., Zhao, J. & Perlman, S. T cell-mediated immune response to respiratory coronaviruses. Immunol. Res. 59(1–3), 118–128 (2014). (PMID: 24845462412553010.1007/s12026-014-8534-z)
Peng, Y. et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 2, 2 (2020).
Zhu, F. C. et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396(10249), 479–488 (2020). (PMID: 32702299783685810.1016/S0140-6736(20)31605-6)
Jeyanathan, M. et al. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 2, 2 (2020).
Morens, D. M. & Fauci, A. S. Emerging pandemic diseases: How we got to COVID-19. Cell 182(5), 1077–1092 (2020). (PMID: 32846157742872410.1016/j.cell.2020.08.021)
Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11(12), 823–836 (2011). (PMID: 2207655610.1038/nri3084)
Peters, B., Nielsen, M. & Sette, A. T cell epitope predictions. Annu. Rev. Immunol. 38, 123–145 (2020). (PMID: 3204531310.1146/annurev-immunol-082119-124838)
Snyder, T. M. et al. Magnitude and dynamics of the T-cell response to SARS-CoV-2 infection at both individual and population levels. MedRxiv. 2, 2 (2020).
Ritmahan, W., Kesmir, C. & Vroomans, R. M. A. Revealing factors determining immunodominant responses against dominant epitopes. Immunogenetics 72(1–2), 109–118 (2020). (PMID: 3181131310.1007/s00251-019-01134-9)
Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547(7661), 94–98 (2017). (PMID: 28636589579421210.1038/nature22976)
Charini, W. A. et al. Clonally diverse CTL response to a dominant viral epitope recognizes potential epitope variants. J. Immunol. 167(9), 4996–5003 (2001). (PMID: 1167350710.4049/jimmunol.167.9.4996)
Cornberg, M. et al. Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. J. Clin. Invest. 116(5), 1443–1456 (2006). (PMID: 1661475410.1172/JCI278041435724)
Luo, W. et al. Limited T cell receptor repertoire diversity in tuberculosis patients correlates with clinical severity. PLoS ONE 7(10), e48117 (2012). (PMID: 2311018610.1371/journal.pone.00481173482216)
Ladell, K. et al. A molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T cells. Immunity 38(3), 425–436 (2013). (PMID: 2352188410.1016/j.immuni.2012.11.021)
Messaoudi, I., Guevara Patino, J. A., Dyall, R., LeMaoult, J. & Nikolich-Zugich, J. Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science 298(5599), 1797–1800 (2002). (PMID: 1245959210.1126/science.1076064)
Peeples, L. News feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc. Natl. Acad. Sci. U.S.A. 117(15), 8218–8221 (2020). (PMID: 3222957410.1073/pnas.20054561177165470)
Altmann, D. M. & Boyton, R. J. SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection. Sci. Immunol. 5(49), 2 (2020). (PMID: 10.1126/sciimmunol.abd6160)
Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584(7821), 437–442 (2020). (PMID: 32555388744269510.1038/s41586-020-2456-9)
Noroozi, R. et al. Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions. Cytokine 133, 155143 (2020). (PMID: 32460144724138610.1016/j.cyto.2020.155143)
Chen, X. et al. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduct. Target Ther. 5(1), 180 (2020). (PMID: 32879307746405710.1038/s41392-020-00301-9)
Liu, L. et al. High neutralizing antibody titer in intensive care unit patients with COVID-19. Emerg. Microbes Infect. 9(1), 1664–1670 (2020). (PMID: 32618497747332110.1080/22221751.2020.1791738)
Hoof, I. et al. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61(1), 1–13 (2009). (PMID: 1900268010.1007/s00251-008-0341-z)
Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982). (PMID: 710895510.1016/0022-2836(82)90515-0)
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48(W1), W449–W454 (2020). (PMID: 32406916731954610.1093/nar/gkaa379)
Team RC. R: A Language and Environment for Statistical Computing. 3.4.4 ed2018.
Substance Nomenclature:
0 (Epitopes, T-Lymphocyte)
0 (Immunodominant Epitopes)
0 (Receptors, Antigen, T-Cell)
0 (Spike Glycoprotein, Coronavirus)
0 (spike protein, SARS-CoV-2)
Entry Date(s):
Date Created: 20210624 Date Completed: 20210706 Latest Revision: 20230203
Update Code:
20240105
PubMed Central ID:
PMC8222233
DOI:
10.1038/s41598-021-92521-4
PMID:
34162945
Czasopismo naukowe
The COVID-19 pandemic has revealed a range of disease phenotypes in infected patients with asymptomatic, mild, or severe clinical outcomes, but the mechanisms that determine such variable outcomes remain unresolved. In this study, we identified immunodominant CD8 T-cell epitopes in the spike antigen using a novel TCR-binding algorithm. The predicted epitopes induced robust T-cell activation in unexposed donors demonstrating pre-existing CD4 and CD8 T-cell immunity to SARS-CoV-2 antigen. The T-cell reactivity to the predicted epitopes was higher than the Spike-S1 and S2 peptide pools in the unexposed donors. A key finding of our study is that pre-existing T-cell immunity to SARS-CoV-2 is contributed by TCRs that recognize common viral antigens such as Influenza and CMV, even though the viral epitopes lack sequence identity to the SARS-CoV-2 epitopes. This finding is in contrast to multiple published studies in which pre-existing T-cell immunity is suggested to arise from shared epitopes between SARS-CoV-2 and other common cold-causing coronaviruses. However, our findings suggest that SARS-CoV-2 reactive T-cells are likely to be present in many individuals because of prior exposure to flu and CMV viruses.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies