Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Comparative transcriptome analysis reveals distinct gene expression profiles in Brachypodium distachyon infected by two fungal pathogens.

Tytuł:
Comparative transcriptome analysis reveals distinct gene expression profiles in Brachypodium distachyon infected by two fungal pathogens.
Autorzy:
Zhu G; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Gao C; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Wu C; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Li M; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Xu JR; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
Liu H; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Wang Q; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China. .
Źródło:
BMC plant biology [BMC Plant Biol] 2021 Jun 30; Vol. 21 (1), pp. 304. Date of Electronic Publication: 2021 Jun 30.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2001-
MeSH Terms:
Gene Expression Profiling*
Gene Expression Regulation, Plant*
Ascomycota/*physiology
Brachypodium/*genetics
Brachypodium/*microbiology
Fusarium/*physiology
Gene Ontology ; Gene Regulatory Networks ; Host-Pathogen Interactions/genetics ; Plant Diseases/microbiology ; Protein Interaction Maps/genetics
References:
New Phytol. 2019 Aug 22;:. (PMID: 31436314)
Science. 2007 Sep 7;317(5843):1400-2. (PMID: 17823352)
PLoS One. 2012;7(11):e49423. (PMID: 23139845)
Mol Plant Pathol. 2010 Nov;11(6):829-46. (PMID: 21029326)
Plant Pathol J. 2014 Dec;30(4):343-54. (PMID: 25506299)
Infect Genet Evol. 2014 Oct;27:446-55. (PMID: 24486735)
PLoS Pathog. 2020 Sep 25;16(9):e1008933. (PMID: 32976518)
Plant Cell. 2009 Apr;21(4):1273-90. (PMID: 19357089)
Science. 2010 Feb 12;327(5967):804-5. (PMID: 20150482)
Plant Cell. 2004 Jun;16(6):1446-65. (PMID: 15161961)
Plant Cell Environ. 2019 Oct;42(10):2931-2944. (PMID: 31364170)
Nature. 2020 Jul;583(7815):271-276. (PMID: 32612234)
Bioinformatics. 2014 Apr 1;30(7):923-30. (PMID: 24227677)
J Exp Bot. 2018 Aug 31;69(19):4529-4537. (PMID: 29873762)
PLoS Pathog. 2015 Apr 02;11(4):e1004801. (PMID: 25837042)
Mol Plant Pathol. 2018 Mar;19(3):764-778. (PMID: 28411402)
Front Plant Sci. 2019 May 07;10:561. (PMID: 31134113)
BMC Genomics. 2013 Mar 21;14:197. (PMID: 23514540)
Mol Plant Microbe Interact. 2017 Sep;30(9):739-753. (PMID: 28598263)
Trends Cell Biol. 2014 Jun;24(6):352-9. (PMID: 24457024)
Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52. (PMID: 25352553)
BMC Plant Biol. 2011 Jun 03;11:100. (PMID: 21639892)
Genes (Basel). 2020 Mar 25;11(4):. (PMID: 32218164)
Plant Mol Biol. 2009 Mar;69(4):473-88. (PMID: 19083153)
Elife. 2014;3:e01355. (PMID: 24473076)
Curr Opin Immunol. 1998 Feb;10(1):16-22. (PMID: 9523105)
Front Plant Sci. 2015 May 12;6:322. (PMID: 26029224)
Front Plant Sci. 2015 Oct 20;6:867. (PMID: 26539199)
Curr Opin Plant Biol. 2007 Aug;10(4):366-71. (PMID: 17644023)
Nature. 2010 Feb 11;463(7282):763-8. (PMID: 20148030)
Plant J. 2004 Mar;37(6):914-39. (PMID: 14996223)
Int J Mol Sci. 2019 Feb 04;20(3):. (PMID: 30720746)
Nucleic Acids Res. 2015 Apr 20;43(7):e47. (PMID: 25605792)
Front Plant Sci. 2019 Jun 26;10:822. (PMID: 31297126)
Front Plant Sci. 2016 Apr 08;7:444. (PMID: 27092161)
Plant J. 2010 Mar;61(6):1029-40. (PMID: 20409276)
BMC Genomics. 2018 Aug 29;19(1):642. (PMID: 30157778)
Funct Integr Genomics. 2016 Mar;16(2):183-201. (PMID: 26797431)
Theor Appl Genet. 2020 May;133(5):1541-1568. (PMID: 31900498)
Annu Rev Phytopathol. 2013;51:245-66. (PMID: 23663002)
Trends Microbiol. 2018 Jul;26(7):582-597. (PMID: 29395728)
Front Plant Sci. 2014 Feb 13;5:42. (PMID: 24592270)
Sci Rep. 2017 Dec 8;7(1):17212. (PMID: 29222453)
Genome Res. 2003 Nov;13(11):2498-504. (PMID: 14597658)
Front Microbiol. 2016 Jul 26;7:1113. (PMID: 27507961)
Nature. 2005 Apr 21;434(7036):980-6. (PMID: 15846337)
Mol Plant Pathol. 2010 Mar;11(2):293-308. (PMID: 20447278)
Plant Cell Environ. 2008 May;31(5):587-601. (PMID: 18031469)
Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
Annu Rev Phytopathol. 2019 Aug 25;57:15-39. (PMID: 30893009)
Mol Plant Pathol. 2004 Jul 1;5(4):253-65. (PMID: 20565594)
Rice (N Y). 2018 Apr 20;11(1):26. (PMID: 29679239)
Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1455-60. (PMID: 14745009)
3 Biotech. 2020 Apr;10(4):172. (PMID: 32206506)
Mol Plant. 2014 Aug;7(8):1267-1287. (PMID: 24777989)
BMC Genomics. 2012 Aug 02;13:369. (PMID: 22857656)
Appl Environ Microbiol. 2013 Apr;79(8):2560-71. (PMID: 23396333)
Bioinformatics. 2005 Aug 15;21(16):3448-9. (PMID: 15972284)
Front Plant Sci. 2016 Dec 08;7:1834. (PMID: 28008334)
Mol Plant. 2015 Apr;8(4):521-39. (PMID: 25744358)
Cell Host Microbe. 2017 Mar 8;21(3):270-273. (PMID: 28279328)
Plant Physiol. 2015 Mar;167(3):1117-35. (PMID: 25635112)
PLoS One. 2012;7(12):e51609. (PMID: 23251593)
New Phytol. 2020 Jan;225(1):70-86. (PMID: 31135961)
Mol Plant Pathol. 2012 May;13(4):414-30. (PMID: 22471698)
Front Plant Sci. 2014 Oct 02;5:505. (PMID: 25324853)
Annu Rev Phytopathol. 2018 Aug 25;56:427-456. (PMID: 29975608)
Pathogens. 2020 Apr 23;9(4):. (PMID: 32340374)
Mol Plant. 2010 Jan;3(1):2-20. (PMID: 20035037)
J Exp Bot. 2014 Jun;65(9):2295-306. (PMID: 24642849)
Genome Biol. 2013 Apr 25;14(4):R36. (PMID: 23618408)
Bioinformatics. 2008 Jul 15;24(14):1650-1. (PMID: 18511468)
Cell Host Microbe. 2007 May 17;1(3):167-74. (PMID: 18005696)
BMC Bioinformatics. 2006 Apr 05;7:191. (PMID: 16597342)
Sci Rep. 2017 Aug 3;7(1):7242. (PMID: 28775360)
BMC Genomics. 2019 May 20;20(1):390. (PMID: 31109305)
BMC Genomics. 2014 Jul 25;15:629. (PMID: 25063396)
Plant Physiol. 2012 Sep;160(1):15-27. (PMID: 22689893)
Plant Biotechnol J. 2015 Dec;13(9):1233-40. (PMID: 26096226)
Annu Rev Phytopathol. 2017 Aug 4;55:257-286. (PMID: 28617654)
PLoS One. 2018 Nov 7;13(11):e0207036. (PMID: 30403737)
Ann Bot. 2015 Apr;115(5):717-31. (PMID: 25808446)
PLoS One. 2016 Dec 1;11(12):e0167295. (PMID: 27907101)
Genomics. 2008 Mar;91(3):243-8. (PMID: 18082363)
Contributed Indexing:
Keywords: Brachypodium distachyon; Fusarium graminearum; Magnaporthe oryzae; Plant-fungal interaction; RNA-seq
SCR Organism:
Fusarium graminearum; Pyricularia oryzae
Entry Date(s):
Date Created: 20210701 Date Completed: 20210714 Latest Revision: 20210714
Update Code:
20240105
PubMed Central ID:
PMC8243454
DOI:
10.1186/s12870-021-03019-0
PMID:
34193039
Czasopismo naukowe
Background: The production of cereal crops is frequently affected by diseases caused by Fusarium graminearum and Magnaporthe oryzae, two devastating fungal pathogens. To improve crop resistance, many studies have focused on understanding the mechanisms of host defense against these two fungi individually. However, our knowledge of the common and different host defenses against these pathogens is very limited.
Results: In this study, we employed Brachypodium distachyon as a model for cereal crops and performed comparative transcriptomics to study the dynamics of host gene expression at different infection stages. We found that infection with either F. graminearum or M. oryzae triggered massive transcriptomic reprogramming in the diseased tissues. Numerous defense-related genes were induced with dynamic changes during the time course of infection, including genes that function in pattern detection, MAPK cascade, phytohormone signaling, transcription, protein degradation, and secondary metabolism. In particular, the expression of jasmonic acid signaling genes and proteasome component genes were likely specifically inhibited or manipulated upon infection by F. graminearum.
Conclusions: Our analysis showed that, although the affected host pathways are similar, their expression programs and regulations are distinct during infection by F. graminearum and M. oryzae. The results provide valuable insight into the interactions between B. distachyon and two important cereal pathogens.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies