Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li-S Batteries.

Tytuł:
Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li-S Batteries.
Autorzy:
Wang R; Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
Wu R; Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China. .
Ding C; Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
Chen Z; Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
Xu H; Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
Liu Y; State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China. .
Zhang J; Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China.
Ha Y; Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
Fei B; Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
Pan H; State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China. .; Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, People's Republic of China. .
Źródło:
Nano-micro letters [Nanomicro Lett] 2021 Jun 30; Vol. 13 (1), pp. 151. Date of Electronic Publication: 2021 Jun 30.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: [Berlin] : Springer
Original Publication: Fayetteville, Ark. : OAHOST
References:
Y.F. Liu, H.G. Pan, M.X. Gao, Q.D. Wang, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J. Mater. Chem. 21, 4743–4755 (2011). https://doi.org/10.1039/C0JM01921F. (PMID: 10.1039/C0JM01921F)
H.G. Pan, Y.F. Liu, M.X. Gao, Y.F. Zhu, Y.Q. Lei et al., An investigation on the structural and electrochemical properties of La 0.7 Mg 0.3 (Ni 0.85 Co 0.15 ) x (x=3.15–3.80) hydrogen storage electrode alloys. J. Alloys Compd. 351, 228–234 (2003). https://doi.org/10.1016/S0925-8388(02)01045-9. (PMID: 10.1016/S0925-8388(02)01045-9)
H.G. Pan, Y.F. Liu, M.X. Gao, Y.Q. Lei, Q.D. Wang, A study of the structural and electrochemical properties of La 0.7 Mg 0.3 (Ni 0.85 Co 0.15 ) x (x=2.5–5.0) hydrogen storage alloys. J. Electrochem. Soc. 150, 565–570 (2005). https://doi.org/10.1016/j.jallcom.2003.12.011. (PMID: 10.1016/j.jallcom.2003.12.011)
B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan et al., A study on the structure and electrochemical properties of La 2 Mg(Ni 0.95 M 0.05 ) 9 (M= Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys. J. Alloys Compd. 376, 186–195 (2004). https://doi.org/10.1016/j.jallcom.2003.12.011. (PMID: 10.1016/j.jallcom.2003.12.011)
R.R. Wang, B.S. Li, L.F. Lai, M.Z. Hou, J.C. Gao et al., 3D urchin-like architectures assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior lithium storage capability. Chem. Eng. J. 355, 752–759 (2019). https://doi.org/10.1016/j.cej.2018.08.136. (PMID: 10.1016/j.cej.2018.08.136)
Z.L. Chen, R.B. Wu, H. Wang, K.H.L. Zhang, Y. Song et al., Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage. Nano Res. 11, 966–978 (2018). https://doi.org/10.1007/s12274-017-1709-x. (PMID: 10.1007/s12274-017-1709-x)
Y. Liu, Z.L. Chen, H.X. Jia, H.B. Xu, M. Liu et al., Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage. ACS Nano 13, 6113–6124 (2019). https://doi.org/10.1021/acsnano.9b02928. (PMID: 10.1021/acsnano.9b02928)
S.Z. Zhang, N. Zhong, X. Zhou, M.J. Zhang, X.P. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett. 12, 112 (2020). https://doi.org/10.1007/s40820-020-00449-7. (PMID: 10.1007/s40820-020-00449-7)
Z. Zhang, D. Luo, G.R. Li, R. Gao, M. Li et al., Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium–sulfur batteries. Matter 3, 1–15 (2020). https://doi.org/10.1016/j.matt.2020.06.002. (PMID: 10.1016/j.matt.2020.06.002)
J.L. Wang, Z. Zhang, X.F. Yan, S.L. Zhang, Z.H. Wu et al., Rational design of porous N–Ti 3 C 2 –S battery. Nano-Micro Lett. 12, 4 (2020). https://doi.org/10.1007/s40820-019-0341-6. (PMID: 10.1007/s40820-019-0341-6)
Z.Q. Ye, Y. Jiang, L. Li, F. Wu, R.J. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries. Adv. Mater. 32, 2002168 (2020). https://doi.org/10.1002/adma.202002168. (PMID: 10.1002/adma.202002168)
Y.N. An, C. Luo, D.H. Yao, S.J. Wen, P.T. Zheng et al., Natural cocoons enabling flexible and stable fabric lithium–sulfur full batteries. Nano-Micro Lett. 13, 84 (2021). https://doi.org/10.1007/s40820-021-00609-3. (PMID: 10.1007/s40820-021-00609-3)
B. Zhang, C. Luo, Y.Q. Deng, Z.J. Huang, G.M. Zhou et al., Optimized catalytic WS 2 –WO 3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10, 2000091 (2020). https://doi.org/10.1002/aenm.202000091. (PMID: 10.1002/aenm.202000091)
E. Cha, M. Patel, S. Bhoyate, V. Prasad, W.B. Choi, Nanoengineering to achieve high efficiency practical lithium–sulfur batteries. Nanoscale Horiz. 5, 808–831 (2020). https://doi.org/10.1039/C9NH00730J. (PMID: 10.1039/C9NH00730J)
M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59, 12636–12652 (2020). https://doi.org/10.1002/anie.201909339. (PMID: 10.1002/anie.201909339)
S.Y. Zhou, S. Yang, X.W. Ding, Y.C. Lai, H.G. Nie et al., Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium–sulfur batteries. ACS Nano 14, 7538–7551 (2020). https://doi.org/10.1021/acsnano.0c03403. (PMID: 10.1021/acsnano.0c03403)
C. Ma, Y.M. Feng, X.J. Liu, Y. Yang, L.J. Zhou et al., Dual-engineered separator for highly robust, all-climate lithium–sulfur batteries. Energy Storage Mater. 32, 46–54 (2020). https://doi.org/10.1016/j.ensm.2020.07.034. (PMID: 10.1016/j.ensm.2020.07.034)
J. Zheng, G.B. Ji, X.L. Fan, J. Chen, Q. Li et al., High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9, 1803774 (2019). https://doi.org/10.1002/aenm.201803774. (PMID: 10.1002/aenm.201803774)
L.L. Zhang, Y.J. Wang, Z.Q. Niu, J. Chen, Advanced nanostructured carbon-based materials for rechargeable lithium–sulfur batteries. Carbon 141, 400–416 (2019). https://doi.org/10.1016/j.carbon.2018.09.067. (PMID: 10.1016/j.carbon.2018.09.067)
H.B. Xu, Y. Liu, Q.Y. Bai, R.B. Wu, Discarded cigarette filter-derived hierarchically porous –sulfur batteries. J. Mater. Chem. A 7, 3558–3562 (2019). https://doi.org/10.1039/C8TA11615F. (PMID: 10.1039/C8TA11615F)
Z. Li, H.B. Wu, X.W. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 9, 3061–3070 (2016). https://doi.org/10.1016/j.nantod.2017.12.010. (PMID: 10.1016/j.nantod.2017.12.010)
J.J. Park, S.H. Yu, Y.E. Sung, Design of structural and functional nanomaterials for lithium–sulfur batteries. Nano Today 18, 35–64 (2018). https://doi.org/10.1016/j.nantod.2017.12.010. (PMID: 10.1016/j.nantod.2017.12.010)
R.R. Li, X.J. Zhou, H.J. Shen, M.H. Yang, C.L. Li, Conductive holey MoO 2 –Mo 3 N 2 heterojunctions as job-synergistic cathode host with low surface area for high-loading Li–S batteries. ACS Nano 13, 10049–10061 (2019). https://doi.org/10.1021/acsnano.9b02231. (PMID: 10.1021/acsnano.9b02231)
Y.G. Zhang, G.R. Li, J.Y. Wang, G.L. Cui, X.L. Wei et al., Hierarchical defective Fe 3 x –sulfur batteries. Adv. Funct. Mater. 30, 2001165 (2020). https://doi.org/10.1002/adfm.202001165. (PMID: 10.1002/adfm.202001165)
Z.W. Seh, Y.M. Sun, Q.F. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/C5CS00410A. (PMID: 10.1039/C5CS00410A)
X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017). https://doi.org/10.1002/adma.201601759. (PMID: 10.1002/adma.201601759)
J.D. Zhu, P. Zhu, C.Y. Yan, X. Dong, X.W. Zhang, Recent progress in polymer materials for advanced lithium–sulfur batteries. Prog. Polym. Sci. 90, 118–163 (2019). https://doi.org/10.1016/j.progpolymsci.2018.12.002. (PMID: 10.1016/j.progpolymsci.2018.12.002)
G.M. Zhou, S.Y. Zhao, T.S. Wang, S.Z. Yang, H. Chen et al., Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 20, 1252–1261 (2020). https://doi.org/10.1021/acs.nanolett.9b04719. (PMID: 10.1021/acs.nanolett.9b04719)
C.G. Wang, H.W. Song, C.C. Yu, Z. Ullah, Z.X. Guan et al., Iron single-atom catalyst anchored on nitrogenrich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 8, 3421–3430 (2020). https://doi.org/10.1039/C9TA11680J. (PMID: 10.1039/C9TA11680J)
Y.J. Li, J.B. Wu, B. Zhang, W.Y. Wang, G.Q. Zhang et al., Fast conversion and controlled deposition of lithium(poly)sulfides in lithium–sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 30, 250–259 (2020). https://doi.org/10.1016/j.ensm.2020.05.022. (PMID: 10.1016/j.ensm.2020.05.022)
Y.J. Li, G.L. Chen, J.R. Mou, Y.Z. Liu, S.F. Xue et al., Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries. Energy Storage Mater. 28, 196–204 (2020). https://doi.org/10.1016/j.ensm.2020.03.008. (PMID: 10.1016/j.ensm.2020.03.008)
Z.Z. Du, X.J. Chen, W. Hu, C.H. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973. (PMID: 10.1021/jacs.8b12973)
J. Xie, B.Q. Li, H.J. Peng, Y.W. Song, M. Zhao et al., Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries. Adv. Mater. 31, 1903813 (2019). https://doi.org/10.1002/adma.201903813. (PMID: 10.1002/adma.201903813)
F. Ma, Y.Y. Wan, X.M. Wang, X.C. Wang, J.H. Liang et al., Bifunctional atomically dispersed Mo–N 2 /C nanosheets boost lithium sulfide deposition decomposition for stable lithium–sulfur batteries. ACS Nano 14, 10115–10126 (2020). https://doi.org/10.1021/acsnano.0c03325. (PMID: 10.1021/acsnano.0c03325)
X.P. Han, X.F. Ling, Y. Wang, T.Y. Ma, C. Zhong et al., Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem. Int. Ed. 58, 5359–5364 (2019). https://doi.org/10.1002/anie.201901109. (PMID: 10.1002/anie.201901109)
H.L. Fei, J.C. Dong, C.Z. Wan, Z.P. Zhao, X. Xu et al., Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 30, 1802146 (2018). https://doi.org/10.1002/adma.201802146. (PMID: 10.1002/adma.201802146)
Y.H. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst et al., Highly active atomically dispersed CoN 4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019). https://doi.org/10.1039/C8EE02694G. (PMID: 10.1039/C8EE02694G)
Y. Ha, B. Fei, X.X. Yan, H.B. Xu, Z.L. Chen et al., Atomically dispersed co-pyridinic N–C for superior oxygen reduction reaction. Adv. Energy Mater. 10, 2002592 (2020). https://doi.org/10.1002/aenm.202002592. (PMID: 10.1002/aenm.202002592)
X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M.Y. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758. (PMID: 10.1002/adma.201706758)
F. Wu, C. Pan, C.T. He, Y.H. Han, W.J. Ma et al., A single-atom Co–N 4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 142, 16861–16867 (2020). https://doi.org/10.1021/jacs.0c07790. (PMID: 10.1021/jacs.0c07790)
H. Yuan, H.J. Peng, B.Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9, 1802768 (2019). https://doi.org/10.1002/aenm.201802768. (PMID: 10.1002/aenm.201802768)
H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Zhang, J. Xie et al., A cooperative interface for highly efficient lithium–sulfur batteries. Adv. Mater. 28, 9551–9558 (2016). https://doi.org/10.1002/adma.201603401. (PMID: 10.1002/adma.201603401)
Q.P. Wu, X.J. Zhou, J. Xu, F.H. Cao, C.L. Li, Adenine derivative host with interlaced 2d structure and dual lithiophilic–sulfiphilic sites to enable high-loading Li–S batteries. ACS Nano 13, 9520–9532 (2019). https://doi.org/10.1021/acsnano.9b04519. (PMID: 10.1021/acsnano.9b04519)
X.C. Gao, D. Zhou, Y. Chen, W.J. Wu, D.W. Su et al., Strong charge polarization effect enabled by surface oxidized titanium nitride for lithium–sulfur batteries. Commun. Chem. 2, 66 (2019). https://doi.org/10.1038/s42004-019-0166-8. (PMID: 10.1038/s42004-019-0166-8)
B. Fei, C.Q. Zhang, D.P. Cai, J.Y. Zheng, Q.D. Chen et al., Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium–sulfur batteries. ACS Nano 15, 6849–6860 (2021). https://doi.org/10.1021/acsnano.0c10603. (PMID: 10.1021/acsnano.0c10603)
Z.S. Wang, J.D. Shen, J. Liu, X.J. Xu, Z.B. Liu et al., Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries. Adv. Mater. 31, 1902228 (2019). https://doi.org/10.1002/adma.201970236. (PMID: 10.1002/adma.201970236)
L.L. Zhang, D.B. Liu, Z. Muhammad, F. Wan, W. Xie et al., Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv. Mater. 31, 1903955 (2019). https://doi.org/10.1002/adma.201903955. (PMID: 10.1002/adma.201903955)
R.C. Wang, C. Luo, T.S. Wang, G.M. Zhou, Y.Q. Deng et al., Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries. Adv. Mater. 32, 2000315 (2020). https://doi.org/10.1002/adma.202000315. (PMID: 10.1002/adma.202000315)
R.R. Wang, Z.L. Chen, Y.Q. Sun, C. Chang, C.F. Ding et al., Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium–sulfur batteries. Chem. Eng. J. 399, 125686 (2020). https://doi.org/10.1016/j.cej.2020.125686. (PMID: 10.1016/j.cej.2020.125686)
D. Luo, Z. Zhang, G.R. Li, S.B. Cheng, S. Li et al., Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb 2 O 5–x nanocluster toward superior Li–S performance. ACS Nano 14, 4849–4860 (2020). https://doi.org/10.1021/acsnano.0c00799. (PMID: 10.1021/acsnano.0c00799)
Y.F. Yang, W.K. Wang, L.X. Li, B.C. Li, J.P. Zhang, Stable cycling of Li–S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator. J. Mater. Chem. A 8, 3692–3700 (2020). https://doi.org/10.1039/C9TA12921A. (PMID: 10.1039/C9TA12921A)
Z.L. Chen, R.B. Wu, M. Liu, H. Wang, H.B. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27, 1702046 (2017). https://doi.org/10.1002/adfm.201702046. (PMID: 10.1002/adfm.201702046)
Y. Tian, G.R. Li, Y.G. Zhang, D. Luo, X. Wang et al., Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries. Adv. Mater. 32, 1904876 (2020). https://doi.org/10.1002/adma.201904876. (PMID: 10.1002/adma.201904876)
X.F. Yang, X.J. Gao, Q. Sun, S.P. Jand, Y. Yu et al., Promoting the transformation of Li 2 S 2 to Li 2 S: significantly increasing utilization of active materials for high-sulfur-loading Li–S batteries. Adv. Mater. 31, 1901220 (2019). https://doi.org/10.1002/adma.201901220. (PMID: 10.1002/adma.201901220)
Contributed Indexing:
Keywords: 3D porous carbon architecture; Cathode; Lithium–sulfur battery; Single-atom Co
Entry Date(s):
Date Created: 20210701 Latest Revision: 20220831
Update Code:
20240105
PubMed Central ID:
PMC8245650
DOI:
10.1007/s40820-021-00676-6
PMID:
34195913
Czasopismo naukowe
The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N 4 has been delicately developed as an advanced sulfur host through a SiO 2 -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithiation process but also endow rich interface with full exposure of Co-N 4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g -1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies