Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Corosolic acid ameliorates non-alcoholic steatohepatitis induced by high-fat diet and carbon tetrachloride by regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways.

Tytuł :
Corosolic acid ameliorates non-alcoholic steatohepatitis induced by high-fat diet and carbon tetrachloride by regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways.
Autorzy :
Liu G; College of Pharmacy, Yanbian University, Jilin, China.
Cui Z; Department of Pharmacy, Yanbian University Hospital, Jilin, China.
Gao X; College of Pharmacy, Yanbian University, Jilin, China.
Liu H; College of Pharmacy, Yanbian University, Jilin, China.
Wang L; College of Integration Science, Yanbian University, Jilin, China.
Gong J; College of Pharmacy, Yanbian University, Jilin, China.
Wang A; College of Pharmacy, Yanbian University, Jilin, China.
Zhang J; College of Pharmacy, Yanbian University, Jilin, China.
Ma Q; College of Pharmacy, Yanbian University, Jilin, China.
Huang Y; Department of Gastroenterology, Yanbian University Hospital, Jilin, China.
Piao G; College of Pharmacy, Yanbian University, Jilin, China.; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China.
Yuan H; College of Pharmacy, Yanbian University, Jilin, China.; College of Integration Science, Yanbian University, Jilin, China.; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China.
Pokaż więcej
Źródło :
Phytotherapy research : PTR [Phytother Res] 2021 Jul 02. Date of Electronic Publication: 2021 Jul 02.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Publication: : Chichester : Wiley
Original Publication: London : Heyden & Son, c1987-
References :
Armstrong, L. E., & Guo, G. L. (2017). Role of FXR in liver inflammation during nonalcoholic steatohepatitis. Current Pharmacology Reports, 3(2), 92-100. https://doi.org/10.1007/s40495-017-0085-2.
Baffy, G. (2009). Kupffer cells in non-alcoholic fatty liver disease: The emerging view. Journal of Hepatology, 51, 212-223. https://doi.org/10.1016/j.jhep.2009.03.008.
Balakrishnan, A., & Al-Assaf, A. H. (2016). Corosolic acid suppresses the expression of inflammatory marker genes in CCl4-induced-hepatotoxic rats. Pakistan Journal of Pharmaceutical Sciences, 29(4), 1133-1338.
Balta, C., Herman, H., Boldura, O. M., Gasca, I., Rosu, M., Ardelean, A., & Hermenean, A. (2015). Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chemico-Biological Interactions, 240, 94-101. https://doi.org/10.1016/j.cbi.2015.08.013.
Cai, C., Zhu, X., Li, P., Li, J., Gong, J., Shen, W., & He, K. (2017). NLRP3 deletion inhibits the non-alcoholic steatohepatitis development and inflammation in kupffer cells induced by palmitic acid. Inflammation, 40(6), 1875-1883. https://doi.org/10.1007/s10753-017-0628-z.
Cai, J., Zhang, X. J., & Li, H. (2019). Progress and challenges in the prevention and control of nonalcoholic fatty liver disease. Medicinal Research Reviews, 39(1), 328-348. https://doi.org/10.1002/med.21515.
Chen, J., Xue, B., Li, K., Shi, J., Krempin, D., Zhu, M., & Garland, C. (2002). The effects of an instant haw beverage on lipid levels, antioxidant enzyme and immune function in hyperlipidemia patients. Zhonghua Yu Fang Yi Xue Za Zhi, 36(3), 172-175.
Chen, Y. S., Chen, Q. Z., & Wang, Z. J. (2019). Anti-inflammatory and hepatoprotective effects of Ganpderma lucidum plysaccharides against carbon tetrachloride-induced liver injury in Kunming mice. Pharmacology, 103(3-4), 143-150. https://doi.org/10.1159/000493896.
Chu, C. Y., Lee, M. J., Liao, C. L., Lin, W. L., Yin, Y. F., & Tseng, T. H. (2003). Inhibitory effect of hot-water extract from dried fruit of Crataegus pinnatifida on low-density lipoprotein (LDL) oxidation in cell and cell-free systems. Journal of Agricultural and Food Chemistry, 51, 7583-7588. https://doi.org/10.1021/jf030407y.
Day, E. A., Ford, R. J., & Steinberg, G. R. (2017). AMPK as a therapeutic target for treating metabolic diseases. Trends in Endocrinology and Metabolism, 28(8), 545-560. https://doi.org/10.1016/j.tem.2017.05.004.
Drew, L. (2017). Fighting the fatty liver. Nature, 550(7675), S102-S103. https://doi.org/10.1038/550S102a.
Fan, J. G., & Farrell, G. C. (2009). Epidemiology of non-alcoholic fatty liver disease in China. Journal of Hepatology, 50(1), 204-210. https://doi.org/10.1016/j.jhep.2008.10.010.
Friedman, S. L. (2000). Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. Journal of Biological Chemistry, 275(4), 2247-2250. https://doi.org/10.1074/jbc.275.4.2247.
Ganguli, S., DeLeeuw, P., & Satapathy, S. K. (2019). A review of current and upcoming treatment modalities in nonalcoholic fatty liver disease and non-alcoholic steatohepatitis. Hepatic Medicine: Evidence and Research, 11, 159-178. https://doi.org/10.2147/HMER.S188991.
Guo, R., Shang, X. Y., Lv, T. M., Yao, G. D., Lin, B., Wang, X. B., … Song, S. J. (2019). Phenylpropanoid derivatuves from the fruit of Crataegus pinnatifida Bunge and their distinctive effects on human hepatoma cells. Phytochemistry, 164, 252-261. https://doi.org/10.1016/j.phytochem.2019.05.005.
Guo, X., Cui, R., Zhao, J., Mo, R., Peng, L., & Yan, M. (2016). Corosolic acid protects hepatocytes against ethanol-induced damage by modulating mitogen-activated protein kinases and activating autophagy. European Journal of Pharmacology, 791, 578-588. https://doi.org/10.1016/j.ejphar.2016.09.031.
Han, X., Cui, Z. Y., Song, J., Piao, H. Q., Lian, L. H., Hou, L. S., … Wu, Y. L. (2019). Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner. Chemico-Biological Interactions, 311, 108794. https://doi.org/10.1016/j.cbi.2019.108794.
Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, 13(4), 251-262. https://doi.org/10.1038/nrm3311.
Ibrahim, S. H., Hirsova, P., Malhi, H., & Gores, G. J. (2016). Animal models of nonalcoholic steatohepatitis: Eat, delete, and inflame. Digestive Diseases Sciences, 61(5), 1325-1336. https://doi.org/10.1007/s10620-015-3977-1.
Jiang, J., Yan, L., Shi, Z., Wang, L., Shan, L., & Efferth, T. (2019). Heptatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. Phytomedicine, 64, 153082. https://doi.org/10.1016/j.phymed.2019.153082.
Kuo, D. H., Yeh, C. H., Shieh, P. C., Cheng, K. C., Chen, F. A., & Cheng, J. T. (2009). Effect of Shanzha, a Chinese herbal product, on obesity and dyslipidemia in hamsters receiving high-fat diet. Journal of Ethnopharmacology, 124(3), 544-550. https://doi.org/10.1016/j.jep.2009.05.005.
Kutlu, O., Kaleli, H. N., & Ozer, E. (2018). Molecular pathogenesis of nonalcoholic steatohepatitis-(NASH-) related hepatocellular carcinoma. Canadian Journal of Gastroenterology and Hepatology, 2018, 8543763. https://doi.org/10.1155/2018/8543763.
Lee, J., Cho, E., Kwon, H., Jeon, J., Jung, C. J., Moon, M., … Jung, J. W. (2019). The fruit of Crataegus pinnatifida ameliorates memory deficits in β-amyloid protein-induced Alzheimer's disease mouse model. Journal of Ethnopharmacology, 243, 11210717. https://doi.org/10.1016/j.jep.2019.112107.
Li, C. R., Hou, X. H., Xu, Y. Y., Gao, W., Li, P., & Yang, H. (2019). Manual annotation combined with untargeted metabolomics for chemical characterization and discrimination of two major crataegus species based on liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Chromatography A, 16, 460628. https://doi.org/10.1016/j.chroma.2019.460628.
Li, X. Q., Tian, W., Liu, X. X., Zhang, K., Huo, J. C., Liu, W. J., … Gao, W. (2016). Corosolic acid inhibits the proliferation of glomerular mesangial cells and protect against diabetic renal damage. Scientific Reports, 6, 26854. https://doi.org/10.1038/srep26854.
Li, Z., Feng, H., Wang, Y., Shen, B., Tian, Y., Wu, L., … Liu, G. (2019). Rosmarinic acid protects mice from lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting MAPKs/NF-κB and activating Nrf2/HO-1 signaling pathways. International Immunopharmacology, 67, 465-472. https://doi.org/10.1016/j.intimp.2018.12.052.
Liu, N., Feng, J., Lu, X., Yao, Z., Liu, Q., Lv, Y., … Zhou, Y. (2019). Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK pathways. Mediators of Inflammation, 2019, 6175091. https://doi.org/10.1155/2019/6175091.
Ma, Q., Ye, L., Li, W., Lin, S., Zhao, X., Jin, C., … Piao, G. (2020). Inhibitory effects of twenty-nine compounds from Potentilla longifolia on lipid accumulation and their mechanisms in 3T3-L1 cells. Frontiers in Pharmacology, 11, 555715. https://doi.org/10.3389/fphar.2020.555715.
Manne, V., Handa, P., & Kowdley, K. V. (2018). Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clinics in Liver Disease, 22(1), 23-37. https://doi.org/10.1016/j.cld.2017.08.007.
Miao, Y., Wu, Y., Jin, Y., Lei, M., Nan, J., & Wu, X. (2020). Benzoquinone derivatives with antioxidant activity inhibit activated hepatic stellate cells and attenuate liver fibrosis in TAA-induced mice. Chemico-Biological Interactions, 317, 108945. https://doi.org/10.1016/j.cbi.2020.108945.
Michelotti, G. A., Machado, M. V., & Diehl, A. M. (2013). NAFLD, NASH and liver cancer. Nature Reviews Gastroenterology & Hepatology, 10(11), 656-665. https://doi.org/10.1038/nrgastro.2013.183.
Niu, C., Chen, C., Chen, L., Cheng, K., Yeh, C., & Cheng, J. (2011). Decrease of blood lipids induced by Shan-Zha (fruit of Crataegus pinnatifida) is mainly related to an increase of PPARα in liver of mice fed high-fat diet. Hormone and Metabolic Research, 43(9), 625-630. https://doi.org/10.1055/s-0031-1283147.
Pavlink, L., Regev, A., Ardayfio, P. A., & Chalasani, N. P. (2019). Drug-induced steatosis and steatohepatitis: The search for novel serum biomarkers among potential biomarkers for non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Drug Safety, 42(6), 701-711. https://doi.org/10.1007/s40264-018-00790-2.
Pennisi, G., Celsa, C., Giammanco, A., Spatola, F., & Petta, S. (2019). The burden of hepatocellular carcinoma in non-alcoholic fatty liver disease: Screening issue and future perspectives. International Journal of Molecular Sciences, 20(22), 5613. https://doi.org/10.3390/ijms20225613.
Rao, Y., Lu, Y. T., Li, C., Song, Q. Q., Xu, Y. H., Xu, Z., … Huang, Z. S. (2019). Bouchardatine analogue alleviates non-alcoholic hepatic fatty liver disease/non-alcoholic steato hepatitis in high-fat fed mice by inhibiting ATP synthase activity. British Journal of Pharmacology, 176(6), 2877-2893. https://doi.org/10.1111/bph.14713.
Sangouni, A. A., & Ghavamzadeh, S. (2019). A review of synbiotic efficacy in non-alcoholic fatty liver disease as a therapeutic approach. Diabetes Metabolic Syndrome and Obesity-Targets, 13(5), 2917-2922. https://doi.org/10.1016/j.dsx.2019.07.063.
Singh, S., Allen, A. M., Wang, Z., Prokop, L. J., Murad, M. H., & Loomba, R. (2015). Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: A systematic review and meta-analysis of paired-biopsy studies. Clinical Gastroenterology and Hepatology, 13(4), 643-654. https://doi.org/10.1016/j.cgh.2014.04.014.
Tang, Y., Cao, G., Min, X., Wang, T., Sun, S., Du, X., & Zhang, W. (2018). Cathepsin B inhibition ameliorates the non-alcoholic steatohepatitis through suppressing caspase-1 activation. Journal of Physiology and Biochemistry, 74(4), 503-510. https://doi.org/10.1007/s13105-018-0644-y.
Tsuchida, T., Lee, Y. A., Fujiwara, N., Ybanez, M., Allen, B., Martins, S., … Friedman, S. L. (2018). A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. Journal of Hepatology, 69(2), 385-395. https://doi.org/10.1016/j.jhep.2018.03.011.
Uchio, R., Murosaki, S., & Ichikawa, H. (2018). Hot water extract of turmeric (Curcuma longa) prevents non-alcoholic steatohepatitis in mice by inhibiting hepatic oxidative stress and inflammation. Journal of Nutritional Science, 7, e36. https://doi.org/10.1017/jns.2018.27.
Wang, D., Lao, L., Pang, X., Qiao, Q., Pang, L., Feng, Z., … Wei, J. (2018). Asiatic acid from Potentilla chinensis alleviates non-alcoholic fatty liver by regulating endoplasmic reticulum stress and lipid metabolism. International Immunopharmacology, 65, 256-267. https://doi.org/10.1016/j.intimp.2018.10.013.
Xu, Y., Zhao, Y., Xu, Y., Guan, Y., Zhang, X., Chen, Y., … Yu, Y. (2017). Blocking inhibition to YAP by actinomycin D enhances anti-tumor efficacy of corosolic acid in treating liver cancer. Cellular Signalling, 29, 209-217. https://doi.org/10.1016/j.cellsig.2016.11.001.
Yamada, K., Hosokawa, M., Yamada, C., Watanabe, R., Fujimoto, S., Fujiwara, H., … Inagaki, N. (2008). Dietary corosolic acid ameliorates obesity and hepatic steatosis in KK-Ay mice. Biological & Pharmaceutical Bulletin, 31(4), 651-655. https://doi.org/10.1248/bpb.31.651.
Yoo, J. H., Liu, Y., & Kim, H. S. (2016). Hawthorn fruit extract elevates expression of Nrf2/HO-1 and improves lipid profiles in ovariectomized rats. Nutrients, 8(5), pii: E283. https://doi.org/10.3390/nu8050283, 8.
Zhang, J. X., Feng, W. J., Liu, G. C., Ma, Q. Q., Li, H. L., Gao, X. Y., … Yuan, H. D. (2020). Corosolic acid attenuates hepatic lipid accumulation and inflammatory response via AMPK/SREBPs and NF-κB/MAPK signaling pathways. American Journal of Chinese Medicine, 48(3), 579-595. https://doi.org/10.1142/S0192415X20500299.
Zhu, R. G., Sun, Y. D., Li, T. P., Chen, G., Peng, X., Duan, W. B., … Jin, X. Y. (2015). Conpatative effects of hawthorn (Crataegus pinnatifida bunge) pectin and pectin hydrolyzates on the chholesterol homeostasis of hamsters fed high-cholesterol dites. Chemico-Biological Interactions, 238, 42-47. https://doi.org/10.1016/j.cbi.2015.06.006.
Grant Information :
81660614 National Natural Science Foundation of China; 82060674 National Natural Science Foundation of China; JJKH20210587KJ Science and Technology Planning Project of the Jilin Provincial Education Department
Contributed Indexing :
Keywords: AMPK; NF-κB; TGF-β1/Smad2; corosolic acid; liver fibrosis
Entry Date(s) :
Date Created: 20210702 Latest Revision: 20210702
Update Code :
20210820
DOI :
10.1002/ptr.7195
PMID :
34213784
Czasopismo naukowe
Hawthorn (Crataegus pinnatifida Bunge. var. major) is an edible and medicinal fruit that is very common in food and traditional Chinese medicine. Corosolic acid (CA), a pentacyclic triterpenoid, which is an active component of hawthorn (Crataegus pinnatifida Bunge. var. major), has been exhibiting various pharmacological activities such as antidiabetic, antibacterial, anticancer, antiinflammatory, and antioxidant effects. The study aimed to evaluate the effect of CA on non-alcoholic steatohepatitis (NASH) in mice induced by 60 kcal% high-fat diet (HFD) and carbon tetrachloride (CCl 4 ). CA lowered liver index and serum AST, ALT, TG, and TC levels compared to those in the model group. Histological analyses of the liver tissues of mice treated with CA revealed significantly decreased number of lipid droplets and alleviated inflammation and fibrosis. CA inhibited the transcripts of pro-fibrogenic markers (including α-SMA, collagen I, and TIMP-1) and the levels of pro-inflammatory cytokines (including TNF-α, IL-1β, caspase-1, and IL-6) associated with hepatic fibrosis, and NF-κB translocation and TGF-β1/Smad2 and AMPK pathways. In addition, CA reduced lipid accumulation via the regulation of AMPK and NF-κB activation in FFA-induced steatotic HepG2 cells. CA also decreased α-SMA, collagen I expressions, and Smad2 phosphorylation, which were reduced by TGF-β1 treatment in LX2 cells. Our results suggested that CA ameliorated NASH through regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways, and CA could be developed as a potential health functional food or therapeutic agent for NASH patients.
(© 2021 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies