Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Study on the Bending Stiffness of a New DNA Origami Nano-Joint.

Tytuł:
A Study on the Bending Stiffness of a New DNA Origami Nano-Joint.
Autorzy:
Dastorani S; Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran.
Ghasemi RH; Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran. .
Soheilifard R; Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran.
Źródło:
Molecular biotechnology [Mol Biotechnol] 2021 Nov; Vol. 63 (11), pp. 1057-1067. Date of Electronic Publication: 2021 Jul 05.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
MeSH Terms:
DNA/*chemistry
Nanostructures/*chemistry
Elasticity ; Humans ; Kinetics ; Molecular Dynamics Simulation ; Nanotechnology ; Nucleic Acid Conformation
References:
Cocco, S., Markob, J. F., & Monasson, R. (2002). Theoretical models for single-molecule DNA and RNA experiments: From elasticity to unzipping. Comptes Rendus Physique, 3, 569–584. (PMID: 10.1016/S1631-0705(02)01345-2)
Seeman, N. C. (2010). Nanomaterials based on DNA. Annual Review of Biochemistry, 79, 65–87. (PMID: 10.1146/annurev-biochem-060308-102244)
Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., & Yan, H. (2011). DNA origami with complex curvatures in three-dimensional space. Science, 332, 342–346. (PMID: 10.1126/science.1202998)
Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302. (PMID: 10.1038/nature04586)
Castro, C. E., Kilchherr, F., Kim, D.-N., Shiao, E. L., Wauer, T., Wortmann, P., Bathe, M., & Dietz, H. (2011). A primer to scaffolded DNA origami. Nature Methods, 8, 221–229. (PMID: 10.1038/nmeth.1570)
Linko, V., & Dietz, H. (2013). The enabled state of DNA nanotechnology. Current Opinion in Biotechnology, 24, 555–561. (PMID: 10.1016/j.copbio.2013.02.001)
Langecker, M., Arnaut, V., Martin, T. G., List, J., Renner, S., Mayer, M., Dietz, H., & Simmel, F. C. (2012). Synthetic lipid membrane channels formed by designed DNA nanostructures. Science, 338, 932–936. (PMID: 10.1126/science.1225624)
Khosravi, R., Ghasemi, R. H., & Soheilifard, R. (2020). Design and simulation of a DNA origami nanopore for large cargoes. Molecular Biotechnology, 62(9), 423–432. (PMID: 10.1007/s12033-020-00261-z)
Douglas, S. M., Bachelet, I., & Church, G. M. (2012). A logic-gated nanorobot for targeted transport of molecular payloads. Science, 335, 831–834. (PMID: 10.1126/science.1214081)
Zadegan, R. M., Jepsen, M. D. E., Thomsen, K. E., Okholm, A. H., Schaffert, D. H., Andersen, E. S., Birkedal, V., & Kjems, J. (2012). Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano, 6, 10050–10053. (PMID: 10.1021/nn303767b)
Mogheiseh, M., Ghasemi, R. H., & Soheilifard, R. (2020). The effect of crossovers on the stability of DNA origami type nanocarriers. Multidiscipline Modeling in Materials and Structures, in press.
Zhou, L., Marras, A. E., Su, H.-J., & Castro, C. E. (2014). DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano, 8(1), 27–34. (PMID: 10.1021/nn405408g)
Tinland, B., Pluen, A., Sturm, J., & Weill, G. (1997). Persistence length of single-stranded DNA. Macromolecules, 30, 5763–5765. (PMID: 10.1021/ma970381+)
Wolfe, K. C., Hastings, W. A., Dutta, S., Long, A., Shapiro, B. A., Woolf, T. B., Guthold, M., & Chirikjian, G. S. (2012). Multiscale modeling of double-helical DNA and RNA: A unification through lie groups. The Journal of Physical Chemistry B, 116, 8556–8572. (PMID: 10.1021/jp2126015)
Marko, J. F., & Siggia, E. D. (1995). Stretching DNA. Macromolecules, 28, 8759–8770. (PMID: 10.1021/ma00130a008)
Cohen, A. E., & Moerner, W. E. (2007). Principal-components analysis of shape fluctuations of single DNA molecules. Proceedings of the National academy of Sciences of the United States of America, 104, 12622–12627. (PMID: 10.1073/pnas.0610396104)
Culpepper, M. L., DiBiasio, C. M., Panas, R. M., Magleby, S., & Howell, L. L. (2006). Simulation of a carbon nanotube-based compliant parallel-guiding mechanism: A nanomechanical building block. Applied Physics Letters, 89(20), 203111/1-203111/3. (PMID: 10.1063/1.2388143)
Magleby, S. P., Culpepper, M. L., Howell, L. L., Panas, R., & DiBiasio, C. M. (2008). Comparison of molecular simulation and pseudo-rigid-body model predictions for a carbon nanotube-based compliant parallel-guiding mechanism. Journal of Mechanical Design, 130, 042308/1-042308/7.
Howell, L. L., & Midha, A. (1994). A method for the design of compliant mechanisms with small-length flexural pivots. Journal of Mechanical Design, 116, 280–290. (PMID: 10.1115/1.2919359)
Howell, L. L. (2001). Compliant mechanisms (pp. 10–18). New York: Wiley-Interscience.
Marras, A. E., Zhou, L., Su, H.-J., & Castro, C. E. (2015). Programmable motion of DNA origami mechanisms. Proceedings of the National Academy of Sciences USA. https://doi.org/10.1073/pnas.1408869112. (PMID: 10.1073/pnas.1408869112)
Castro, C. E., Su, H.-J., Marras, A. E., Zhou, L., & Johnson, J. (2015). Mechanical design of DNA nanostructures. Nanoscale, 7(14), 5913–5921. (PMID: 10.1039/C4NR07153K)
Zhou, L. (2017). Design modeling and analysis of compliant and rigid-body DNA origami mechanisms’, PhD Thesis, The Ohio State University.
Dastorani, S., Mogheiseh, M., Ghasemi, R. H., & Soheilifard, R. (2020). Modeling and Structural investigation of a new DNA origami based flexible bio-nano joint. Molecular Simulation. https://doi.org/10.1080/08927022.2020.1797019. (PMID: 10.1080/08927022.2020.1797019)
Ghasemi, R. H., Keramati, M., & Mojarrad, M. H. S. (2019). The effect of structure on improvement of the PNA Young modulus: A study of steered molecular dynamics. Computational Biology and Chemistry, 83, 107–133. (PMID: 10.1016/j.compbiolchem.2019.107133)
Peters, J. P., Yelgaonkar, S. P., Srivatsan, S. G., Tor, Y., & James Maher, L., III. (2013). Mechanical properties of DNA-like polymers. Nucleic Acids Research, 41, 10593–10604. (PMID: 10.1093/nar/gkt808)
Kim, Y. J., & Kim, D. N. (2016). Structural basis for elastic mechanical properties of the DNA double helix. PloS One, 11, e0153228. (PMID: 10.1371/journal.pone.0153228)
Kim, Y.-J., & Kim, D.-N. (2016). Sensitivity analysis for the mechanical properties of DNA bundles. Journal of Nanomaterials. https://doi.org/10.1155/2016/6287937. (PMID: 10.1155/2016/6287937)
Sevier, S. A. (2020). Mechanical properties of DNA replication. Physical Review Research, 2, 023280. (PMID: 10.1103/PhysRevResearch.2.023280)
Shrestha, P., Emura, T., Koirala, D., Cui, Y., Hidaka, K., Maximuck, W. J., Endo, M., Sugiyama, H., & Mao, H. (2016). Mechanical properties of DNA origami nanoassemblies are determined by holliday junction mechanophores. Nucleic Acids Research, 44, 6574–6582. (PMID: 10.1093/nar/gkw610)
Suma, A., Stopar, A., Nicholson, A. W., Castronovo, M., & Carnevale, V. (2020). Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure. Nucleic Acids Research, 48, 4672. (PMID: 10.1093/nar/gkaa080)
Helfrich, W. (1973). Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift für Naturforschung C, 28(11), 693–703. https://doi.org/10.1515/znc-1973-11-1209. (PMID: 10.1515/znc-1973-11-1209)
Douglas, S. M., Marblestonen, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., & Shih, W. M. (2009). Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Research, 37(15), 5001–5006. (PMID: 10.1093/nar/gkp436)
Yoo, J., & Aksimentiev, A. (2013). In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proceedings of the National Academy of Sciences USA, 110, 20099–20104. (PMID: 10.1073/pnas.1316521110)
Contributed Indexing:
Keywords: Bending stiffness; DNA origami nano-joint; Mechanical properties; Steered molecular dynamics
Substance Nomenclature:
9007-49-2 (DNA)
Entry Date(s):
Date Created: 20210705 Date Completed: 20220214 Latest Revision: 20220214
Update Code:
20240105
DOI:
10.1007/s12033-021-00367-y
PMID:
34224047
Czasopismo naukowe
The present article aims to investigate the mechanical properties of a new DNA origami nano-joint using the steered molecular dynamics (SMD) simulation. Since the analysis of mechanical properties is of great importance in bending conditions for a nano-joint, the forces are selected to achieve angular changes in the joint by the resultant torque. In this study, the nano-joint is considered as a beam in order to use mechanical equations to extract the mechanical properties of the designed nano-joint. In addition, the bending stiffness of the beam is investigated in different modes of deflection using the Euler-Bernoulli beam theory. The results revealed that the value of bending stiffness increases with increasing deflection, and the changes in the bending stiffness relative to the deflection is linear. The proposed DNA origami nano-joint can be used as a joint in nanorobots and can be effectively applied in nanorobotic systems to move different components.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies