Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A novel Hv1 inhibitor reveals a new mechanism of inhibition of a voltage-sensing domain.

Tytuł:
A novel Hv1 inhibitor reveals a new mechanism of inhibition of a voltage-sensing domain.
Autorzy:
Zhao C; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA.; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA.
Hong L; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA.
Riahi S; Department of Chemistry, University of California, Irvine, Irvine, CA.
Lim VT; Department of Chemistry, University of California, Irvine, Irvine, CA.
Tobias DJ; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA.; Department of Chemistry, University of California, Irvine, Irvine, CA.
Tombola F; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA.; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA.
Źródło:
The Journal of general physiology [J Gen Physiol] 2021 Sep 06; Vol. 153 (9). Date of Electronic Publication: 2021 Jul 06.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: New York, N.Y. : Rockefeller University Press
Original Publication: New York, N.Y. : Rockefeller Institute for Medical Research, c1918-
MeSH Terms:
Ion Channel Gating*
Ion Channels*/metabolism
Potassium ; Protons
References:
Science. 2015 Dec 18;350(6267):aac5464. (PMID: 26680203)
Cell. 2019 Feb 7;176(4):702-715.e14. (PMID: 30661758)
Sci Rep. 2015 Aug 24;5:13278. (PMID: 26299574)
Nat Struct Mol Biol. 2010 Jan;17(1):44-50. (PMID: 20023640)
Nature. 2011 Oct 23;480(7376):273-7. (PMID: 22020278)
Neuron. 2013 Jan 23;77(2):274-87. (PMID: 23352164)
Biophys J. 1993 Oct;65(4):1590-8. (PMID: 7506066)
Cell. 2019 Sep 5;178(6):1362-1374.e16. (PMID: 31447178)
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):E8359-E8368. (PMID: 27956641)
Nat Rev Drug Discov. 2019 May;18(5):339-357. (PMID: 30728472)
Nature. 2006 Apr 27;440(7088):1213-6. (PMID: 16554753)
Proc Natl Acad Sci U S A. 2015 May 5;112(18):5714-9. (PMID: 25901329)
Elife. 2016 Sep 30;5:. (PMID: 27690226)
Physiol Rev. 2013 Apr;93(2):599-652. (PMID: 23589829)
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9971-6. (PMID: 24912149)
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9673-4. (PMID: 24920591)
Br J Pharmacol. 2020 May;177(10):2351-2364. (PMID: 31975366)
Annu Rev Immunol. 2018 Apr 26;36:695-715. (PMID: 29490163)
J Gen Physiol. 2016 Jan;147(1):1-24. (PMID: 26712848)
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7692-5. (PMID: 18509058)
J Gen Physiol. 1999 Dec;114(6):819-38. (PMID: 10578017)
Nat Struct Mol Biol. 2010 Jul;17(7):869-875. (PMID: 20543828)
Neuron. 2008 May 22;58(4):546-56. (PMID: 18498736)
J Comput Chem. 2005 Dec;26(16):1781-802. (PMID: 16222654)
Nat Struct Mol Biol. 2010 Jan;17(1):51-6. (PMID: 20023639)
J Phys Chem B. 1998 Apr 30;102(18):3586-616. (PMID: 24889800)
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9240-9245. (PMID: 30127012)
J Comput Chem. 2010 Jan 30;31(2):455-61. (PMID: 19499576)
Science. 2019 Mar 22;363(6433):1303-1308. (PMID: 30765606)
J Gen Physiol. 2018 Jun 4;150(6):863-881. (PMID: 29743298)
Antioxid Redox Signal. 2015 Aug 10;23(5):490-513. (PMID: 24483328)
Biophys J. 2014 Oct 7;107(7):1564-72. (PMID: 25296308)
Nat Struct Mol Biol. 2014 Apr;21(4):352-7. (PMID: 24584463)
J Membr Biol. 1994 Sep;141(3):203-23. (PMID: 7528804)
Neuron. 2011 Dec 22;72(6):991-1000. (PMID: 22196334)
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9111-6. (PMID: 18583477)
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):E273-82. (PMID: 24379371)
Trends Biochem Sci. 2016 Oct;41(10):816-818. (PMID: 27545067)
J Phys Chem B. 2010 Jun 17;114(23):7830-43. (PMID: 20496934)
Biochemistry. 2019 Oct 1;58(39):4017-4027. (PMID: 31365236)
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13490-13498. (PMID: 32461356)
J Gen Physiol. 2021 Sep 6;153(9):. (PMID: 34228044)
J Physiol. 2010 May 1;588(Pt 9):1435-49. (PMID: 20231140)
Elife. 2016 Aug 30;5:. (PMID: 27572256)
Sci Rep. 2015 Sep 14;5:14077. (PMID: 26365828)
Nature. 2008 Nov 13;456(7219):202-8. (PMID: 19005548)
Science. 2006 Apr 28;312(5773):589-92. (PMID: 16556803)
Grant Information:
P30 CA062203 United States CA NCI NIH HHS; R01 GM098973 United States GM NIGMS NIH HHS; R01GM098973 United States GM NIGMS NIH HHS; P30CA062203 United States CA NCI NIH HHS
Substance Nomenclature:
0 (Ion Channels)
0 (Protons)
RWP5GA015D (Potassium)
Entry Date(s):
Date Created: 20210706 Date Completed: 20211022 Latest Revision: 20230413
Update Code:
20240105
PubMed Central ID:
PMC8263925
DOI:
10.1085/jgp.202012833
PMID:
34228045
Czasopismo naukowe
Voltage-gated sodium, potassium, and calcium channels consist of four voltage-sensing domains (VSDs) that surround a central pore domain and transition from a down state to an up state in response to membrane depolarization. While many types of drugs bind pore domains, the number of organic molecules known to bind VSDs is limited. The Hv1 voltage-gated proton channel is made of two VSDs and does not contain a pore domain, providing a simplified model for studying how small ligands interact with VSDs. Here, we describe a ligand, named HIF, that interacts with the Hv1 VSD in the up and down states. We find that HIF rapidly inhibits proton conduction in the up state by blocking the open channel, as previously described for 2-guanidinobenzimidazole and its derivatives. HIF, however, interacts with a site slowly accessible in the down state. Functional studies and MD simulations suggest that this interaction traps the compound in a narrow pocket lined with charged residues within the VSD intracellular vestibule, which results in slow recovery from inhibition. Our findings point to a "wrench in gears" mechanism whereby side chains within the binding pocket trap the compound as the teeth of interlocking gears. We propose that the use of screening strategies designed to target binding sites with slow accessibility, similar to the one identified here, could lead to the discovery of new ligands capable of interacting with VSDs of other voltage-gated ion channels in the down state.
(© 2021 Zhao et al.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies