-
Tytuł:
-
The Preventive Effects of Quercetin on Preterm Birth Based on Network Pharmacology and Bioinformatics.
-
Autorzy:
-
Zhang J; Department of Obstetrics, Xiangya Hospital, Central South University, No.87 XiangYa Road, Changsha, 410078, Hunan Province, China.; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China.
Peng Q; Department of Obstetrics, Xiangya Hospital, Central South University, No.87 XiangYa Road, Changsha, 410078, Hunan Province, China.
Deng Y; Department of Obstetrics, Xiangya Hospital, Central South University, No.87 XiangYa Road, Changsha, 410078, Hunan Province, China.
Sun M; Department of Obstetrics, Xiangya Hospital, Central South University, No.87 XiangYa Road, Changsha, 410078, Hunan Province, China.
Zhao Y; Department of Obstetrics, Xiangya Hospital, Central South University, No.87 XiangYa Road, Changsha, 410078, Hunan Province, China.
Zhang W; Department of Obstetrics, Xiangya Hospital, Central South University, No.87 XiangYa Road, Changsha, 410078, Hunan Province, China. .; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China. .
-
Źródło:
-
Reproductive sciences (Thousand Oaks, Calif.) [Reprod Sci] 2022 Jan; Vol. 29 (1), pp. 193-202. Date of Electronic Publication: 2021 Jul 06.
-
Typ publikacji:
-
Journal Article; Research Support, Non-U.S. Gov't
-
Język:
-
English
-
Imprint Name(s):
-
Publication: 2020- : [New York] : Springer
Original Publication: Thousand Oaks, Calif. : Sage
-
MeSH Terms:
-
Premature Birth/*prevention & control
Quercetin/*therapeutic use
Computational Biology ; Databases, Factual ; Humans ; Infant, Newborn ; Molecular Docking Simulation ; Protein Interaction Maps
-
References:
-
Zierden HC, Ortiz JI, DeLong K, Yu J, Li G, Dimitrion P, et al. Enhanced drug delivery to the reproductive tract using nanomedicine reveals therapeutic options for prevention of preterm birth. Sci Transl Med. 2021;13(576). https://doi.org/10.1126/scitranslmed.abc6245 .
He C, Liu L, Chu Y, Perin J, Dai L, Li X, et al. National and subnational all-cause and cause-specific child mortality in China, 1996-2015: a systematic analysis with implications for the Sustainable Development Goals. Lancet Glob Health. 2017;5(2):e186–e97. https://doi.org/10.1016/S2214-109X(16)30334-5 . (PMID: 10.1016/S2214-109X(16)30334-528007477)
Lappas M. The IL-1beta signalling pathway and its role in regulating pro-inflammatory and pro-labour mediators in human primary myometrial cells. Reprod Biol. 2017;17(4):333–40. https://doi.org/10.1016/j.repbio.2017.09.006 . (PMID: 10.1016/j.repbio.2017.09.00628988892)
Kemp MW. Preterm birth, intrauterine infection, and fetal inflammation. Front Immunol. 2014;5:574. https://doi.org/10.3389/fimmu.2014.00574 . (PMID: 10.3389/fimmu.2014.00574255207164249583)
Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, et al. The preterm parturition syndrome. BJOG : an international journal of obstetrics and gynaecology. 2006;113(Suppl 3):17–42. https://doi.org/10.1111/j.1471-0528.2006.01120.x . (PMID: 10.1111/j.1471-0528.2006.01120.x)
Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–5. https://doi.org/10.1126/science.1251816 . (PMID: 10.1126/science.1251816251244294191866)
Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res. 2021;28:231–43. https://doi.org/10.1016/j.jare.2020.07.007 . (PMID: 10.1016/j.jare.2020.07.00733364059)
Revuelta MP, Hidalgo A, Cantabrana B. Involvement of cAMP and beta-adrenoceptors in the relaxing effect elicited by flavonoids on rat uterine smooth muscle. J Auton Pharmacol. 1999;19(6):353–8. https://doi.org/10.1111/j.1365-2680.1999.tb00008.x . (PMID: 10.1111/j.1365-2680.1999.tb00008.x10961741)
Vanhees K, Godschalk RW, Sanders A, van Waalwijk van Doorn-Khosrovani SB, van Schooten FJ. Maternal quercetin intake during pregnancy results in an adapted iron homeostasis at adulthood. Toxicology. 2011;290(2-3):350–8. https://doi.org/10.1016/j.tox.2011.10.017 . (PMID: 10.1016/j.tox.2011.10.01722064046)
Liang C, DeCourcy K, Prater MR. High-saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice. Metab Clin Exp. 2010;59(7):943–50. https://doi.org/10.1016/j.metabol.2009.10.015 . (PMID: 10.1016/j.metabol.2009.10.01520022072)
Prater MR, Laudermilch CL, Liang C, Holladay SD. Placental oxidative stress alters expression of murine osteogenic genes and impairs fetal skeletal formation. Placenta. 2008;29(9):802–8. https://doi.org/10.1016/j.placenta.2008.06.010 . (PMID: 10.1016/j.placenta.2008.06.010186754552583463)
Lin X, Peng Q, Zhang J, Li X, Huang J, Duan S, et al. Quercetin prevents lipopolysaccharide-induced experimental preterm labor in mice and increases offspring survival rate. Reprod Sci. 2020;27(4):1047–57. https://doi.org/10.1007/s43032-019-00034-3 . (PMID: 10.1007/s43032-019-00034-332157554)
Zhang X, Gao R, Zhou Z, Tang X, Lin J, Wang L, et al. A network pharmacology based approach for predicting active ingredients and potential mechanism of Lianhuaqingwen capsule in treating COVID-19. Int J Med Sci. 2021;18(8):1866–76. https://doi.org/10.7150/ijms.53685 . (PMID: 10.7150/ijms.53685337466047976588)
Tomaszewski P, Kubiak-Tomaszewska G, Pachecka J. Cytochrome P450 polymorphism--molecular, metabolic, and pharmacogenetic aspects. II. Participation of CYP isoenzymes in the metabolism of endogenous substances and drugs. Acta Pol Pharm. 2008;65(3):307–18. (PMID: 18646550)
Haas DM, Quinney SK, McCormick CL, Jones DR, Renbarger JL. A pilot study of the impact of genotype on nifedipine pharmacokinetics when used as a tocolytic. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2012;25(4):419–23. https://doi.org/10.3109/14767058.2011.583700 . (PMID: 10.3109/14767058.2011.583700)
Haas DM, Quinney SK, Clay JM, Renbarger JL, Hebert MF, Clark S, et al. Nifedipine pharmacokinetics are influenced by CYP3A5 genotype when used as a preterm labor tocolytic. Am J Perinatol. 2013;30(4):275–81. https://doi.org/10.1055/s-0032-1323590 . (PMID: 10.1055/s-0032-132359022875663)
Xu L, Guo X, Li N, Pan Q, Ma YZ. Effects of quercetin on Aroclor 1254-induced expression of CYP450 and cytokines in pregnant rats. J Immunotoxicol. 2019;16(1):140–8. https://doi.org/10.1080/1547691X.2019.1604585 . (PMID: 10.1080/1547691X.2019.160458531290710)
Buhimschi IA, Buhimschi CS, Weiner CP. Protective effect of N-acetylcysteine against fetal death and preterm labor induced by maternal inflammation. Am J Obstet Gynecol. 2003;188(1):203–8. https://doi.org/10.1067/mob.2003.112 . (PMID: 10.1067/mob.2003.11212548218)
Tripathi A, Kumar B, Sagi SSK. Prophylactic efficacy of quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats. PLoS One. 2019;14(6):e0219075. https://doi.org/10.1371/journal.pone.0219075 . (PMID: 10.1371/journal.pone.0219075312517716599121)
Iskusnykh IY, Buddington RK, Chizhikov VV. Preterm birth disrupts cerebellar development by affecting granule cell proliferation program and Bergmann glia. Exp Neurol. 2018;306:209–21. https://doi.org/10.1016/j.expneurol.2018.05.015 . (PMID: 10.1016/j.expneurol.2018.05.015297722466291230)
Bensley JG, Moore L, De Matteo R, Harding R, Black MJ. Impact of preterm birth on the developing myocardium of the neonate. Pediatr Res. 2018;83(4):880–8. https://doi.org/10.1038/pr.2017.324 . (PMID: 10.1038/pr.2017.32429278645)
Chen Z, Yuan Q, Xu G, Chen H, Lei H, Su J. Effects of quercetin on proliferation and H(2)O(2)-induced apoptosis of intestinal porcine enterocyte cells. Molecules. 2018;23(8). https://doi.org/10.3390/molecules23082012 .
Wu X, Qu X, Zhang Q, Dong F, Yu H, Yan C, et al. Quercetin promotes proliferation and differentiation of oligodendrocyte precursor cells after oxygen/glucose deprivation-induced injury. Cell Mol Neurobiol. 2014;34(3):463–71. https://doi.org/10.1007/s10571-014-0030-4 . (PMID: 10.1007/s10571-014-0030-424519463)
Yao JL, He QZ, Liu M, Chang XW, Wu JT, Duan T, et al. Effects of delta(9)-tetrahydrocannabinol (THC) on human amniotic epithelial cell proliferation and migration. Toxicology. 2018;394:19–26. https://doi.org/10.1016/j.tox.2017.11.016 . (PMID: 10.1016/j.tox.2017.11.01629191629)
Rezabakhsh A, Rahbarghazi R, Malekinejad H, Fathi F, Montaseri A, Garjani A. Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019;56:183–93. https://doi.org/10.1016/j.phymed.2018.11.008 . (PMID: 10.1016/j.phymed.2018.11.008)
Yan R, Tian H, Du Z. Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122. Iranian journal of basic medical sciences. 2019;22(4):391–8. https://doi.org/10.22038/ijbms.2019.30224.7287 . (PMID: 10.22038/ijbms.2019.30224.7287311683436535198)
Demendi C, Borzsonyi B, Vegh V, Nagy ZB, Rigo J Jr, Pajor A, et al. Gene expression patterns of the Bcl-2 and Bax genes in preterm birth. Acta Obstet Gynecol Scand. 2012;91(10):1212–7. https://doi.org/10.1111/j.1600-0412.2012.01428.x . (PMID: 10.1111/j.1600-0412.2012.01428.x22524261)
Daher S, Guimaraes AJ, Mattar R, Ishigai MM, Barreiro EG, Bevilacqua E. Bcl-2 and Bax expressions in pre-term, term and post-term placentas. Am J Reprod Immunol. 2008;60(2):172–8. https://doi.org/10.1111/j.1600-0897.2008.00609.x . (PMID: 10.1111/j.1600-0897.2008.00609.x18705844)
Park DJ, Jeon SJ, Kang JB, Koh PO. Quercetin reduces ischemic brain injury by preventing ischemia-induced decreases in the neuronal calcium sensor protein hippocalcin. Neuroscience. 2020;430:47–62. https://doi.org/10.1016/j.neuroscience.2020.01.015 . (PMID: 10.1016/j.neuroscience.2020.01.01531982469)
Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, et al. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol. 2018;9:1383. https://doi.org/10.3389/fphar.2018.01383 . (PMID: 10.3389/fphar.2018.01383306187326297180)
Cole TJ, Short KL, Hooper SB. The science of steroids. Semin Fetal Neonatal Med. 2019;24(3):170–5. https://doi.org/10.1016/j.siny.2019.05.005 . (PMID: 10.1016/j.siny.2019.05.00531147162)
Fu L, Chen YH, Xu S, Yu Z, Zhang ZH, Zhang C, et al. Oral cholecalciferol supplementation alleviates lipopolysaccharide-induced preterm delivery partially through regulating placental steroid hormones and prostaglandins in mice. Int Immunopharmacol. 2019;69:235–44. https://doi.org/10.1016/j.intimp.2019.01.052 . (PMID: 10.1016/j.intimp.2019.01.05230738993)
Menon R, Jones J, Gunst PR, Kacerovsky M, Fortunato SJ, Saade GR, et al. Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reprod Sci. 2014;21(6):791–803. https://doi.org/10.1177/1933719113518987 . (PMID: 10.1177/1933719113518987244409954016728)
Santes-Palacios R, Marroquin-Perez AL, Hernandez-Ojeda SL, Camacho-Carranza R, Govezensky T, Espinosa-Aguirre JJ. Human CYP1A1 inhibition by flavonoids. Toxicology in vitro : an international journal published in association with BIBRA. 2020;62:104681. https://doi.org/10.1016/j.tiv.2019.104681 . (PMID: 10.1016/j.tiv.2019.104681)
Zhou W, Yuan WF, Chen C, Wang SM, Liang SW. Study on material base and action mechanism of compound Danshen dripping pills for treatment of atherosclerosis based on modularity analysis. J Ethnopharmacol. 2016;193:36–44. https://doi.org/10.1016/j.jep.2016.07.014 . (PMID: 10.1016/j.jep.2016.07.01427396350)
Pantham P, Armstrong DL, Bodnariuc J, Haupt O, Johnson AW, Underhill L, et al. Transcriptomic profiling of fetal membranes of mice deficient in biglycan and decorin as a model of preterm birth. Biol Reprod. 2020;104:611–23. https://doi.org/10.1093/biolre/ioaa205 . (PMID: 10.1093/biolre/ioaa2057962763)
Atalay MA, Ozmen T, Demir BC, Kasapoglu I, Ozkaya G. Serum decorin measurement in prediction of the risk for preterm birth. Taiwanese journal of obstetrics & gynecology. 2018;57(1):23–7. https://doi.org/10.1016/j.tjog.2017.12.004 . (PMID: 10.1016/j.tjog.2017.12.004)
Borghi SM, Mizokami SS, Pinho-Ribeiro FA, Fattori V, Crespigio J, Clemente-Napimoga JT, et al. The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. J Nutr Biochem. 2018;53:81–95. https://doi.org/10.1016/j.jnutbio.2017.10.010 . (PMID: 10.1016/j.jnutbio.2017.10.01029197723)
Thiyagarajan V, Lin SH, Chia YC, Weng CF. A novel inhibitor, 16-hydroxy-cleroda-3,13-dien-16,15-olide, blocks the autophosphorylation site of focal adhesion kinase (Y397) by molecular docking. Biochim Biophys Acta. 2013;1830(8):4091–101. https://doi.org/10.1016/j.bbagen.2013.04.027 . (PMID: 10.1016/j.bbagen.2013.04.02723628706)
Chen HY, Gao LT, Yuan JQ, Zhang YJ, Liu P, Wang G, et al. Decrease in SHP-1 enhances myometrium remodeling via FAK activation leading to labor. Am J Physiol Endocrinol Metab. 2020;318(6):E930–E42. https://doi.org/10.1152/ajpendo.00068.2020 . (PMID: 10.1152/ajpendo.00068.202032343611)
Cao HH, Cheng CY, Su T, Fu XQ, Guo H, Li T, et al. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Mol Cancer. 2015;14:103. https://doi.org/10.1186/s12943-015-0367-4 . (PMID: 10.1186/s12943-015-0367-4259718894435529)
Reece MS, McGregor JA, Allen KG, Harris MA. Maternal and perinatal long-chain fatty acids: possible roles in preterm birth. Am J Obstet Gynecol. 1997;176(4):907–14. https://doi.org/10.1016/s0002-9378(97)70620-3 . (PMID: 10.1016/s0002-9378(97)70620-39125620)
Menon R, Fortunato SJ, Milne GL, Brou L, Carnevale C, Sanchez SC, et al. Amniotic fluid eicosanoids in preterm and term births: effects of risk factors for spontaneous preterm labor. Obstet Gynecol. 2011;118(1):121–34. https://doi.org/10.1097/AOG.0b013e3182204eaa . (PMID: 10.1097/AOG.0b013e3182204eaa216911703286836)
Peiris HN, Vaswani K, Holland O, Koh YQ, Almughlliq FB, Reed S, et al. Altered productions of prostaglandins and prostamides by human amnion in response to infectious and inflammatory stimuli identified by mutliplex mass spectrometry. Prostaglandins Leukot Essent Fat Acids. 2020;154:102059. https://doi.org/10.1016/j.plefa.2020.102059 . (PMID: 10.1016/j.plefa.2020.102059)
Hirasawa N, Santini F, Beaven MA. Activation of the mitogen-activated protein kinase/cytosolic phospholipase A2 pathway in a rat mast cell line. Indications of different pathways for release of arachidonic acid and secretory granules. J Immunol. 1995;154(10):5391–402. (PMID: 7730640)
Crescente M, Jessen G, Momi S, Holtje HD, Gresele P, Cerletti C, et al. Interactions of gallic acid, resveratrol, quercetin and aspirin at the platelet cyclooxygenase-1 level. Functional and modelling studies. Thromb Haemost. 2009;102(2):336–46. https://doi.org/10.1160/TH09-01-0057 . (PMID: 10.1160/TH09-01-005719652885)
Guo H, Ren H, Liang S, Ji Y, Jiang H, Zhang P, et al. Phosphatidylinositol 3-kinase/Akt signal pathway resists the apoptosis and inflammation in human extravillous trophoblasts induced by Porphyromonas gingivalis. Mol Immunol. 2018;104:100–7. https://doi.org/10.1016/j.molimm.2018.10.008 . (PMID: 10.1016/j.molimm.2018.10.00830448607)
Nadeau-Vallee M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic neuromedin U receptor 2 and its ligands are upregulated by inflammation in mice and humans, and elicit preterm birth. Biol Reprod. 2016;95(3):72. https://doi.org/10.1095/biolreprod.116.140905 . (PMID: 10.1095/biolreprod.116.140905275121495394981)
Huang S, Zhu X, Huang W, He Y, Pang L, Lan X, et al. Quercetin inhibits pulmonary arterial endothelial cell transdifferentiation possibly by Akt and Erk1/2 pathways. Biomed Res Int. 2017;2017:6147294–8. https://doi.org/10.1155/2017/6147294 . (PMID: 10.1155/2017/6147294284289635385898)
Garcia-Verdugo I, Leiber D, Robin P, Billon-Denis E, Chaby R, Tanfin Z. Direct interaction of surfactant protein A with myometrial binding sites: signaling and modulation by bacterial lipopolysaccharide. Biol Reprod. 2007;76(4):681–91. https://doi.org/10.1095/biolreprod.106.058131 . (PMID: 10.1095/biolreprod.106.05813117202387)
Mogami H, Kishore AH, Shi H, Keller PW, Akgul Y, Word RA. Fetal fibronectin signaling induces matrix metalloproteases and cyclooxygenase-2 (COX-2) in amnion cells and preterm birth in mice. J Biol Chem. 2013;288(3):1953–66. https://doi.org/10.1074/jbc.M112.424366 . (PMID: 10.1074/jbc.M112.42436623184961)
Copley Salem C, Ulrich C, Quilici D, Schlauch K, Buxton ILO, Burkin H. Mechanical strain induced phospho-proteomic signaling in uterine smooth muscle cells. J Biomech. 2018;73:99–107. https://doi.org/10.1016/j.jbiomech.2018.03.040 . (PMID: 10.1016/j.jbiomech.2018.03.04029661501)
Chao PY, Huang YP, Hsieh WB. Inhibitive effect of purple sweet potato leaf extract and its components on cell adhesion and inflammatory response in human aortic endothelial cells. Cell Adhes Migr. 2013;7(2):237–45. https://doi.org/10.4161/cam.23649 . (PMID: 10.4161/cam.23649)
Indra MR, Karyono S, Ratnawati R, Malik SG. Quercetin suppresses inflammation by reducing ERK1/2 phosphorylation and NF kappa B activation in leptin-induced human umbilical vein endothelial cells (HUVECs). BMC research notes. 2013;6:275. https://doi.org/10.1186/1756-0500-6-275 . (PMID: 10.1186/1756-0500-6-275238561943725156)
Gargiulo AR, Khan-Dawood FS, Dawood MY. Epidermal growth factor receptors in uteroplacental tissues in term pregnancy before and after the onset of labor. J Clin Endocrinol Metab. 1997;82(1):113–7. https://doi.org/10.1210/jcem.82.1.3671 . (PMID: 10.1210/jcem.82.1.36718989243)
Knijnenburg TA, Vockley JG, Chambwe N, Gibbs DL, Humphries C, Huddleston KC, et al. Genomic and molecular characterization of preterm birth. Proc Natl Acad Sci U S A. 2019;116(12):5819–27. https://doi.org/10.1073/pnas.1716314116 . (PMID: 10.1073/pnas.1716314116308333906431191)
Kramer EL, Deutsch GH, Sartor MA, Hardie WD, Ikegami M, Korfhagen TR, et al. Perinatal increases in TGF-{alpha} disrupt the saccular phase of lung morphogenesis and cause remodeling: microarray analysis. Am J Physiol Lung Cell Mol Physiol. 2007;293(2):L314–27. https://doi.org/10.1152/ajplung.00354.2006 . (PMID: 10.1152/ajplung.00354.200617468132)
Hanikoglu A, Kucuksayan E, Hanikoglu F, Ozben T, Menounou G, Sansone A, et al. Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes. Can J Physiol Pharmacol. 2020;98(3):131–8. https://doi.org/10.1139/cjpp-2019-0352 . (PMID: 10.1139/cjpp-2019-035231545905)
Cuevas MJ, Tieppo J, Marroni NP, Tunon MJ, Gonzalez-Gallego J. Suppression of amphiregulin/epidermal growth factor receptor signals contributes to the protective effects of quercetin in cirrhotic rats. J Nutr. 2011;141(7):1299–305. https://doi.org/10.3945/jn.111.140954 . (PMID: 10.3945/jn.111.14095421562239)
Littauer EQ, Skountzou I. Hormonal regulation of physiology, innate immunity and antibody response to H1N1 influenza virus infection during pregnancy. Front Immunol. 2018;9:2455. https://doi.org/10.3389/fimmu.2018.02455 . (PMID: 10.3389/fimmu.2018.02455304208546215819)
Hao K, Xu X, Laird N, Wang X, Xu X. Power estimation of multiple SNP association test of case-control study and application. Genet Epidemiol. 2004;26(1):22–30. https://doi.org/10.1002/gepi.10293 . (PMID: 10.1002/gepi.1029314691954)
Wu WX, Ma XH, Yoshizato T, Shinozuka N, Nathanielsz PW. Differential expression of myometrial oxytocin receptor and prostaglandin H synthase 2, but not estrogen receptor alpha and heat shock protein 90 messenger ribonucleic acid in the gravid horn and nongravid horn in sheep during betamethasone-induced labor. Endocrinology. 1999;140(12):5712–8. https://doi.org/10.1210/endo.140.12.7201 . (PMID: 10.1210/endo.140.12.720110579336)
Samare-Najaf M, Zal F, Safari S. Primary and secondary markers of doxorubicin-induced female infertility and the alleviative properties of quercetin and vitamin E in a rat model. Reprod Toxicol. 2020;96:316–26. https://doi.org/10.1016/j.reprotox.2020.07.015 . (PMID: 10.1016/j.reprotox.2020.07.01532810592)
Rassi CM, Lieberherr M, Chaumaz G, Pointillart A, Cournot G. Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin. Cell Tissue Res. 2005;319(3):383–93. https://doi.org/10.1007/s00441-004-1053-9 . (PMID: 10.1007/s00441-004-1053-915688188)
Kiyga E, Sengelen A, Adiguzel Z, Onay UE. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol Biol Rep. 2020;47(7):4957–67. https://doi.org/10.1007/s11033-020-05641-x . (PMID: 10.1007/s11033-020-05641-x32638319)
Pirianov G, MacIntyre DA, Lee Y, Waddington SN, Terzidou V, Mehmet H, et al. Specific inhibition of c-Jun N-terminal kinase delays preterm labour and reduces mortality. Reproduction. 2015;150(4):269–77. https://doi.org/10.1530/REP-15-0258 . (PMID: 10.1530/REP-15-0258261838924982111)
Mu MM, Chakravortty D, Sugiyama T, Koide N, Takahashi K, Mori I, et al. The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J Endotoxin Res. 2001;7(6):431–8. https://doi.org/10.1179/096805101101533034 . (PMID: 10.1179/09680510110153303411753212)
Karjalainen MK, Huusko JM, Ulvila J, Sotkasiira J, Luukkonen A, Teramo K, et al. A potential novel spontaneous preterm birth gene, AR, identified by linkage and association analysis of X chromosomal markers. PLoS One. 2012;7(12):e51378. https://doi.org/10.1371/journal.pone.0051378 . (PMID: 10.1371/journal.pone.0051378232272633515491)
Abarikwu SO, Pant AB, Farombi EO. Effects of quercetin on mRNA expression of steroidogenesis genes in primary cultures of Leydig cells treated with atrazine. Toxicology in vitro : an international journal published in association with BIBRA. 2013;27(2):700–7. https://doi.org/10.1016/j.tiv.2012.11.005 . (PMID: 10.1016/j.tiv.2012.11.005)
Ulrich CC, Arinze V, Wandscheer CB, Copley Salem C, Nabati C, Etezadi-Amoli N, et al. Matrix metalloproteinases 2 and 9 are elevated in human preterm laboring uterine myometrium and exacerbate uterine contractilitydagger. Biol Reprod. 2019;100(6):1597–604. https://doi.org/10.1093/biolre/ioz054 . (PMID: 10.1093/biolre/ioz054309515836561860)
Sundrani D, Narang A, Mehendale S, Joshi S, Chavan-Gautam P. Investigating the expression of MMPs and TIMPs in preterm placenta and role of CpG methylation in regulating MMP-9 expression. IUBMB Life. 2017;69(12):985–93. https://doi.org/10.1002/iub.1687 . (PMID: 10.1002/iub.168729130646)
Wu TC, Chan ST, Chang CN, Yu PS, Chuang CH, Yeh SL. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-kappaB signaling in A549cells. Chem Biol Interact. 2018;292:101–9. https://doi.org/10.1016/j.cbi.2018.07.010 . (PMID: 10.1016/j.cbi.2018.07.01030016632)
Lan H, Hong W, Fan P, Qian D, Zhu J, Bai B. Quercetin inhibits cell migration and invasion in human osteosarcoma cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2017;43(2):553–67. https://doi.org/10.1159/000480528 . (PMID: 10.1159/000480528)
Ballmann C, Denney TS, Beyers RJ, Quindry T, Romero M, Amin R, et al. Lifelong quercetin enrichment and cardioprotection in Mdx/Utrn+/- mice. Am J Physiol Heart Circ Physiol. 2017;312(1):H128–H40. https://doi.org/10.1152/ajpheart.00552.2016 . (PMID: 10.1152/ajpheart.00552.201627836895)
-
Contributed Indexing:
-
Keywords: Epidermal growth factor receptor; Matrix metallopeptidase 9; Preterm birth; Quercetin
-
Substance Nomenclature:
-
9IKM0I5T1E (Quercetin)
-
Entry Date(s):
-
Date Created: 20210707 Date Completed: 20220311 Latest Revision: 20220311
-
Update Code:
-
20221216
-
DOI:
-
10.1007/s43032-021-00674-4
-
PMID:
-
34231170
-
Our previous study has shown that quercetin prevented lipopolysaccharide-induced preterm birth. This study aims to clarify the potential targets and biological mechanisms of quercetin in preventing preterm birth. We used bioinformatics databases to collect the candidate targets for quercetin and preterm birth. The biological functions and enriched pathways of the intersecting targets were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Then, the hub targets were identified by cytoscape plugin cytoHubba from the protein-protein interaction network. We obtained 105 targets for quercetin in preventing preterm birth. The biological processes of the intersecting targets are mainly involved in steroid metabolic process, drug metabolic process, oxidation-reduction process, omega-hydroxylase P450 pathway, positive regulation of cell migration, negative regulation of apoptotic process, and positive regulation of cell proliferation. The highly enriched pathways were steroid hormone biosynthesis, metabolism of xenobiotics by cytochrome P450, proteoglycans in cancer, focal adhesion, and arachidonic acid metabolism. The ten hub targets for quercetin in preventing preterm birth were AKT serine/threonine kinase 1, mitogen-activated protein kinase 3, epidermal growth factor receptor, prostaglandin-endoperoxide synthase 2, mitogen-activated protein kinase 1, estrogen receptor 1, heat shock protein 90 alpha family class A member 1, mitogen-activated protein kinase 8, androgen receptor, and matrix metallopeptidase 9. Molecular docking analysis showed good bindings between these proteins and quercetin. In conclusion, these findings highlight the key targets and molecular mechanisms of quercetin in preventing preterm birth.
(© 2021. Society for Reproductive Investigation.)