Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Genome-wide identification and expression analysis of glycosyltransferase gene family 1 in Quercus robur L.

Tytuł:
Genome-wide identification and expression analysis of glycosyltransferase gene family 1 in Quercus robur L.
Autorzy:
Zhang J; College of Life Science, North China University of Science and Technology, Tangshan, Hebei, China.
Lin LM; College of Life Science, North China University of Science and Technology, Tangshan, Hebei, China.
Cheng WW; College of Life Science, North China University of Science and Technology, Tangshan, Hebei, China.
Song X; College of Life Science, North China University of Science and Technology, Tangshan, Hebei, China.
Long YH; College of Life Science, North China University of Science and Technology, Tangshan, Hebei, China.
Xing ZB; College of Life Science, North China University of Science and Technology, Tangshan, Hebei, China. .
Źródło:
Journal of applied genetics [J Appl Genet] 2021 Dec; Vol. 62 (4), pp. 559-570. Date of Electronic Publication: 2021 Jul 09.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2011- : Cheshire, United Kingdom : Springer
Original Publication: Poznań, Poland : Institute of Plant Genetics, Polish Academy of Sciences, 1995-
MeSH Terms:
Glycosyltransferases*/genetics
Quercus*/genetics
Genome ; Phylogeny
References:
Baldacci-Cresp F, Le Roy J, Huss B et al (2020) UDP-glycosyltransferase 72E3 plays a role in lignification of secondary cell walls in Arabidopsis. Int J Mol Sci 21:6094. https://doi.org/10.3390/ijms21176094. (PMID: 10.3390/ijms211760947503680)
Behr M, Neutelings G, El Jaziri M et al (2020) You want it sweeter: how glycosylation affects plant response to oxidative stress. Front Plant Sci 11:571399. https://doi.org/10.3389/fpls.2020.571399. (PMID: 10.3389/fpls.2020.571399330421897525049)
Bowles D, Isayenkova J, Lim EK et al (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8:254–263. https://doi.org/10.1016/j.pbi.2005.03.007. (PMID: 10.1016/j.pbi.2005.03.00715860422)
Caputi L, Malnoy M, Goremykin V et al (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69:1030–1042. https://doi.org/10.1111/j.1365-313X.2011.04853.x. (PMID: 10.1111/j.1365-313X.2011.04853.x22077743)
Carpena M, Pereira AG, Prieto MA et al (2020) Wine aging technology: fundamental role of wood barrels. Foods 9:1160. https://doi.org/10.3390/foods9091160. (PMID: 10.3390/foods90911607555037)
Chen CJ, Chen H, Zhang Y et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. (PMID: 10.1016/j.molp.2020.06.009)
Chu LL, Pandey RP, Lim HN et al (2017) Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities. J Biol Eng 11:15. https://doi.org/10.1186/s13036-017-0056-5. (PMID: 10.1186/s13036-017-0056-5283966945382406)
DróżdżPaulina, Krystyna et al (2018) Assessment of polyphenol content and antioxidant activity of oak bark extracts. Eur J Wood Wood Prod 76:793–795. https://doi.org/10.1007/s00107-017-1280-x. (PMID: 10.1007/s00107-017-1280-x)
Elansary HO, Szopa A, Kubica P et al (2019) Polyphenol profile and pharmaceutical potential of Quercus spp. bark extracts. Plants (Basel) 8:486. https://doi.org/10.3390/plants8110486. (PMID: 10.3390/plants8110486)
Guleria P, Yadav SK (2014) Overexpression of a glycosyltransferase gene SrUGT74G1 from Stevia improved growth and yield of transgenic Arabidopsis by catechin accumulation. Mol Biol Rep 41:1741–1752. https://doi.org/10.1007/s11033-014-3023-y. (PMID: 10.1007/s11033-014-3023-y24430293)
Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18:477–483. https://doi.org/10.1016/j.tplants.2013.06.003. (PMID: 10.1016/j.tplants.2013.06.00323870661)
Jackson RG, Lim EK, Li Y et al (2001) Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem 276:4350–4356. https://doi.org/10.1074/jbc.M006185200. (PMID: 10.1074/jbc.M00618520011042207)
Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. https://doi.org/10.1038/nature06148. (PMID: 10.1038/nature0614817721507)
Jin SH, Ma XM, Kojima M et al (2013) Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta 237:991–999. https://doi.org/10.1007/s00425-012-1818-4. (PMID: 10.1007/s00425-012-1818-423187681)
Keegstra K, Raikhel N (2001) Plant glycosyltransferases. Curr Opin Plant Biol 4:219–224. https://doi.org/10.1016/s1369-5266(00)00164-3. (PMID: 10.1016/s1369-5266(00)00164-311312132)
Kersten B, Ghirardo A, Schnitzler JP et al (2013) Integrated transcriptomics and metabolomics decipher differences in the resistance of pedunculate oak to the herbivore Tortrix viridana L. BMC Genomics 14:737. https://doi.org/10.1186/1471-2164-14-737. (PMID: 10.1186/1471-2164-14-737241604444007517)
Kim B, Kim HM, Kang MK et al (2020) 5′-UTR and ORF elements, as well as the 3′-UTR regulate the translation of cyclin. Biochem Biophys Res Commun 527:968–973. https://doi.org/10.1016/j.bbrc.2020.04.151. (PMID: 10.1016/j.bbrc.2020.04.15132439164)
Li Y, Baldauf S, Lim EK et al (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276:4338–4343. https://doi.org/10.1074/jbc.M007447200. (PMID: 10.1074/jbc.M00744720011042215)
Li Y, Li P, Wang Y et al (2014) Genome-wide identification and phylogenetic analysis of family-1 UDP glycosyltransferases in maize (Zea mays). Planta 239:1265–1279. https://doi.org/10.1007/s00425-014-2050-1. (PMID: 10.1007/s00425-014-2050-124647682)
Liang H, Hu Z, Zhang T et al (2017) Production of a bioactive unnatural ginsenoside by metabolically engineered yeasts based on a new UDP-glycosyltransferase from Bacillus subtilis. Metab Eng 44:60–69. https://doi.org/10.1016/j.ymben.2017.07.008. (PMID: 10.1016/j.ymben.2017.07.00828778764)
Lin JS, Huang XX, Li Q et al (2016) UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant J 88:26–42. https://doi.org/10.1111/tpj.13229. (PMID: 10.1111/tpj.1322927273756)
Madritsch S, Wischnitzki E, Kotrade P et al (2019) Elucidating drought stress tolerance in European oaks through cross-species transcriptomics. G3 (Bethesda) 9:3181–3199. https://doi.org/10.1534/g3.119.400456. (PMID: 10.1534/g3.119.400456)
Meissner D, Albert A, Böttcher C et al (2008) The role of UDP-glucose:hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta 228:663–674. https://doi.org/10.1007/s00425-008-0768-3. (PMID: 10.1007/s00425-008-0768-318563436)
Mittasch J, Böttcher C, Frolova N et al (2014) Identification of UGT84A13 as a candidate enzyme for the first committed step of gallotannin biosynthesis in pedunculate oak (Quercus robur). Phytochemistry 99:44–51. https://doi.org/10.1016/j.phytochem.2013.11.023. (PMID: 10.1016/j.phytochem.2013.11.02324412325)
Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci U S A 100:15682–15687. https://doi.org/10.1073/pnas.2535513100. (PMID: 10.1073/pnas.253551310014671323307628)
Paquette S, Møller BL, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry 62:399–413. https://doi.org/10.1016/s0031-9422(02)00558-7. (PMID: 10.1016/s0031-9422(02)00558-712620353)
Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427. https://doi.org/10.1038/nature11798. (PMID: 10.1038/nature1179823257886)
Perez AJ, Pecio L, Kowalczyk M et al (2017) Triterpenoid components from oak heartwood (Quercus robur) and their potential health benefits. J Agric Food Chem 65:4611–4623. https://doi.org/10.1021/acs.jafc.7b01396. (PMID: 10.1021/acs.jafc.7b0139628535679)
Plomion C, Aury JM, Amselem J et al (2018) Oak genome reveals facets of long lifespan. Nat Plants 4:440–452. https://doi.org/10.1038/s41477-018-0172-3. (PMID: 10.1038/s41477-018-0172-3299153316086335)
Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501. https://doi.org/10.1146/annurev.ecolsys.29.1.467. (PMID: 10.1146/annurev.ecolsys.29.1.467)
Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670. (PMID: 10.1038/nature0867020075913)
Schroeder H, Cronn R, Yanbaev Y et al (2016) Development of molecular markers for determining continental origin of wood from white oaks (Quercus L. sect. Quercus). PLoS One 11:e0158221. https://doi.org/10.1371/journal.pone.0158221. (PMID: 10.1371/journal.pone.0158221273522424924829)
Speeckaert N, Adamou NM, Hassane HA et al (2020) Characterization of the UDP-glycosyltransferase UGT72 family in poplar and identification of genes involved in the glycosylation of monolignols. Int J Mol Sci 21(14):5018. https://doi.org/10.3390/ijms21145018. (PMID: 10.3390/ijms211450187404001)
Tanaka T, Antonio BA, Kikuchi S et al (2008) The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033. https://doi.org/10.1093/nar/gkm978. (PMID: 10.1093/nar/gkm97818089549)
Tohge T, Nishiyama Y, Hirai MY et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235. https://doi.org/10.1111/j.1365-313X.2005.02371.x. (PMID: 10.1111/j.1365-313X.2005.02371.x15807784)
Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. https://doi.org/10.1038/ng.654. (PMID: 10.1038/ng.65420802477)
Wang Y, Chen L, Li Y et al (2016) Efficient enzymatic production of rebaudioside A from stevioside. Biosci Biotechnol Biochem 80:67–73. https://doi.org/10.1080/09168451.2015.1072457. (PMID: 10.1080/09168451.2015.107245726264414)
Wu A, Hao P, Wei H et al (2019) Genome-wide Identification and characterization of glycosyltransferase family 47 in cotton. Front Genet 10:824. https://doi.org/10.3389/fgene.2019.00824. (PMID: 10.3389/fgene.2019.00824315724426749837)
Yan Y, Li Z, Koffas MA (2008) High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng 100:126–140. https://doi.org/10.1002/bit.21721. (PMID: 10.1002/bit.2172118023053)
Yang C, Li C, Wei W et al (2020) The unprecedented diversity of UGT94-family UDP-glycosyltransferases in Panax plants and their contribution to ginsenoside biosynthesis. Sci Rep 10:15394. https://doi.org/10.1038/s41598-020-72278-y. (PMID: 10.1038/s41598-020-72278-y329587897506552)
Zhou K, Hu L, Li P et al (2017) Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Sci 265:131–145. https://doi.org/10.1016/j.plantsci.2017.10.003. (PMID: 10.1016/j.plantsci.2017.10.00329223335)
Contributed Indexing:
Keywords: Gene family; Glycosyltransferase; Phylogenetic tree; Quercus robur L.; UGT
Substance Nomenclature:
EC 2.4.- (Glycosyltransferases)
Entry Date(s):
Date Created: 20210709 Date Completed: 20211109 Latest Revision: 20211109
Update Code:
20240105
DOI:
10.1007/s13353-021-00650-3
PMID:
34241817
Czasopismo naukowe
Glycosyltransferase gene family 1, also known as uridine diphosphate glycosyltransferase (UGT), is the largest glycosyltransferase family in plants, playing a vital role in their growth and development. In this study, 244 UGT genes with conserved PSPG motifs were identified in the genome of Quercus robur L. The collinearity analysis results showed that tandem repeat was the main way of UGT genes expansion in Q. robur, with 21 groups of 55 tandem repeat genes. UGT genes were divided into 15 subgroups A-P; group K was lost, and the gene structure and conserved domain of the same subgroup were basically the same. Cis-element analysis showed that upstream 2,000 bp promoter sequence of UGT genes contained light response elements, plant hormone response elements, and stress-related cis-elements, which indicated that UGT genes of Q. robur might be regulated by various metabolic pathways. In particular, some UGTs in group L of Q. robur contained a conserved promoter structure. The expression pattern analysis results demonstrated that UGT genes of groups B, D, E, and I were differentially expressed under Tortrix viridana L. stress. The expression of UGTs in group E decreased under stress, the expression of group L increased, and that of genes in groups D and B were different. The functions of UGT genes in E and L groups are relatively conservative, and their functions may also conserve among species. The study results have a particular reference value for further research on the function of Q. robur UGT genes.
(© 2021. Institute of Plant Genetics, Polish Academy of Sciences, Poznan.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies