Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9.

Tytuł:
Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9.
Autorzy:
Gim GM; Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.; BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
Kwon DH; Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.; BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
Eom KH; Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.; BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
Moon J; LARTBio Inc., Seoul, Republic of Korea.
Park JH; LARTBio Inc., Seoul, Republic of Korea.
Lee WW; LARTBio Inc., Seoul, Republic of Korea.
Jung DJ; Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea.
Kim DH; Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea.
Yi JK; Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea.
Ha JJ; Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea.
Lim KY; Center for Genome Engineering, Institute for Basic Science (IBS), Seoul, Republic of Korea.
Kim JS; Center for Genome Engineering, Institute for Basic Science (IBS), Seoul, Republic of Korea.
Jang G; Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.; BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
Źródło:
Biotechnology journal [Biotechnol J] 2022 Jul; Vol. 17 (7), pp. e2100198. Date of Electronic Publication: 2021 Jul 22.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Weinheim : Wiley-VCH Verlag, c2006-
MeSH Terms:
CRISPR-Cas Systems*/genetics
Myostatin*/genetics
Myostatin*/metabolism
Animals ; Animals, Genetically Modified ; Cattle/genetics ; Gene Editing/methods ; Phenotype
References:
Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1-8.
Van Eenennaam, A. L. (2019). Application of genome editing in farm animals: Cattle. Transgenic Research, 28,93-100.
Dahl, G. E. (2020). Physiology of lactation in dairy cattle-Challenges to sustainable production. Animal Agriculture, pp. 121-129.
Lima, F., Vries, A. De, Risco, C., Santos, J., & Thatcher, W. (2010). Economic comparison of natural service and timed artificial insemination breeding programs in dairy cattle. Journal of Dairy Science, 93, 4404-4413.
Kambadur, R., Sharma, M., Smith, T. P., & Bass, J. J. (1997). Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research, 7, 910-915.
Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., Parker, H. G., & Ostrander, E. A. (2007). A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs, Plos Genetics. 3, e79.
Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibé, B., Bouix, J., Caiment, F., Elsen, J.-M., Eychenne, F., Larzul, C., Laville, E., Meish, F., Milenkovic, D., Tobin, J., Charlier, C. & Georges, M. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep, Nature Genetics. 38, 813-818.
Qian, L., Tang, M., Yang, J., Wang, Q., Cai, C., Jiang, S., Li, H., Jiang, K., Gao, P., Ma, D., Chen, Y., An, X., Li, K., & Cui, W. (2015). Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Scientific Reports, 5, 1-13.
Schuelke, M., Wagner, K. R., Stolz, L. E., Hübner, C., Riebel, T., Kömen, W., Braun, T., Tobin, J. F., & Lee, S.-J. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine, 350, 2682-2688.
Georges, M., Charlier, C., & Hayes, B. (2019). Harnessing genomic information for livestock improvement. Nature Reviews Genetics, 20, 135-156.
Liu, X., Wang, Y., Tian, Y., Yu, Y., Gao, M., Hu, G., Su, F., Pan, S., Luo, Y., Guo, Z., Quan, F., & Zhang, Y. (2014). Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proceedings of the Royal Society B: Biological Sciences 281, 20133368.
Carlson, D. F., Lancto, C. A., Zang, B., Kim, E.-S., Walton, M., Oldeschulte, D., Seabury, C., Sonstegard, T. S., & Fahrenkrug, S. C. (2016). Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 34, 479-481.
Yu, S., Luo, J., Song, Z., Ding, F., Dai, Y., & Li, N. (2011). Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 21, 1638-1640.
Richt, J. A., Kasinathan, P., Hamir, A. N., Castilla, J., Sathiyaseelan, T., Vargas, F., Sathiyaseelan, J., Wu, H., Matsushita, H., Koster, J., Kato, S., Ishida, I., Soto, C., Robl, J. M., & Kuroiwa, Y. (2007). Production of cattle lacking prion protein. Nature Biotechnology, 25, 132-138.
Brophy, B., Smolenski, G., Wheeler, T., Wells, D., L'Huillier, P., & Laible, G. (2003). Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nature Biotechnology, 21, 157-162.
Tan, W., Proudfoot, C., Lillico, S. G., & Whitelaw, C. B. A. (2016). Gene targeting, genome editing: From Dolly to editors. Transgenic Research, 25, 273-287.
Yum, S.-Y., Youn, K.-Y., Choi, W.-J., & Jang, G. (2018). Development of genome engineering technologies in cattle: from random to specific. Journal of Animal Science and Biotechnology, 9, 1-9.
MCLEAN, Z., OBACK, B., & LAIBLE, G. (2020). Embryo-mediated genome editing for accelerated genetic improvement of livestock. Frontiers of Agricultural Science and Engineering, 7, 148-160.
Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., Lillico, S. G., Mileham, A. J., McLaren, D. G., Whitelaw, C. B. A., & Fahrenkrug, S. C. (2015). Genome edited sheep and cattle. Transgenic Research, 24, 147-153.
Park, J., Lim, K., Kim, J. S., & Bae, S. (2017). Cas-analyzer: An online tool for assessing genome editing results using NGS data. Bioinformatics, 33 286-288. https://doi.org/10.1093/bioinformatics/btw561.
Liu, L., & Fan, X.-D. (2014). CRISPR-Cas system: A powerful tool for genome engineering. Plant Molecular Biology, 85, 209-218.
Lee, S.-J., & McPherron, A. C. (2001). Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences of the United States of America, 98, 9306-9311.
Tries, R. S., Chen, T., Da Vies, M. V., Tomkinson, K. N., Pearson, A. A., Shakey, Q. A., & Wolfman, N. M. (2001). GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Groundwater, 18, 251-259.
Wolfman, N. M., McPherron, A. C., Pappano, W. N., Davies, M. V., Song, K., Tomkinson, K. N., Wright, J. F., Zhao, L., Sebald, S. M., Greenspan, D. S., & Lee, S.-J. (2003). Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proceedings of the National Academy of Sciences of the United States of America, 100, 15842-15846.
Grobet, L., Poncelet, D., Royo, L. J., Brouwers, B., Pirottin, D., Michaux, C., Ménissier, F., Zanotti, M., Dunner, S., & Georges, M. (1998). Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome, 9 210-213.
Luo, J., Song, Z., Yu, S., Cui, D., Wang, B., Ding, F., Li, S., Dai, Y., & Li, N. (2014). Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. Plos One, 9, e95225.
Kocsis, T., Trencsenyi, G., Szabo, K., Baan, J. A., Muller, G., Mendler, L., Garai, I., Reinauer, H., Deak, F., Dux, L., & Keller-Pinter, A. (2017). Myostatin propeptide mutation of the hypermuscular Compact mice decreases the formation of myostatin and improves insulin sensitivity, American Journal of Physiology-Endocrinology and Metabolism. 312, E150-E160.
Cenariu, M., Pall, E., Cernea, C., & Groza, I. (2012). Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability. Journal of Biomedicine and Biotechnology, 41384.
Grant Information:
2017R1A2B3004972 National Research Foundation of Korea; NRF-2020R1F1052024 National Research Foundation of Korea; Research Institute of Veterinary Science; BK21 Four Program for Future Veterinary Medicine Leading Education and Research; #550-2020005 Seoul National University
Contributed Indexing:
Keywords: CRISPR-Cas9; MSTN; bovine embryos; in vitro fertilization; microinjection
Substance Nomenclature:
0 (Myostatin)
Entry Date(s):
Date Created: 20210711 Date Completed: 20220715 Latest Revision: 20220715
Update Code:
20240105
DOI:
10.1002/biot.202100198
PMID:
34247443
Czasopismo naukowe
Many genome-edited animals have been produced using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology to edit specific genes. However, there are few guidelines for the application of this technique to cattle. The goal of this study was to produce trait-improved cattle using the genome-editing technology CRISPR-Cas9. Myostatin (MSTN) was selected as a target locus, and synthetic mRNA of sgRNA and Cas9 were microinjected into fertilized bovine embryos in vitro. As a result, 17 healthy calves were born, and three of them showed MSTN mutation rates of 10.5%, 45.4%, and 99.9%, respectively. Importantly, the offspring with the 99.9% MSTN mutation rate had a biallelic mutation (-12 bps) and a double-muscling phenotype. In conclusion, we demonstrate that the genome-editing technology CRISPR-Cas9 can produce genetically modified calves with improved traits.
(© 2021 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies