Information

Dear user, the application need JavaScript support. Please enable JavaScript in your browser.

Title of the item:

Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway.

Title:
Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway.
Authors:
Cui ZY; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
Wang G; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
Zhang J; Research and Development Center, Liaoning Shengjing Stem cell technology Co., Ltd, Shenyang, China.
Song J; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
Jiang YC; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
Dou JY; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
Lian LH; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
Nan JX; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.; Clinical Research Centre, Affiliated Hospital of Yanbian University, Yanji, China.
Wu YL; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
Source:
Phytotherapy research : PTR [Phytother Res] 2021 Oct; Vol. 35 (10), pp. 5680-5693. Date of Electronic Publication: 2021 Jul 12.
Publication Type:
Journal Article
Language:
English
Imprint Name(s):
Publication: : Chichester : Wiley
Original Publication: London : Heyden & Son, c1987-
MeSH Terms:
STAT3 Transcription Factor*/metabolism
Toll-Like Receptor 4*/metabolism
Inflammation ; Liver Cirrhosis/drug therapy ; Sesquiterpenes ; Signal Transduction ; Tanacetum parthenium
References:
Alegre, F., Pelegrin, P., & Feldstein, A. E. (2017). Inflammasomes in liver fibrosis. Seminars in Liver Disease, 37(2), 119-127. https://doi.org/10.1055/s-0037-1601350.
Aydın, M. M., & Akçalı, K. C. (2018). Liver fibrosis. The Turkish Journal of Gastroenterology, 29(1), 14-21. https://doi.org/10.5152/tjg.2018.17330.
Bahabadi, M., Mohammadalipour, A., Karimi, J., Sheikh, N., Solgi, G., Goudarzi, F., … Khodadadi, I. (2017). Hepatoprotective effect of parthenolide in rat model of nonalcoholic fatty liver disease. Immunopharmacology and Immunotoxicology, 39(4), 233-242. https://doi.org/10.1080/08923973.2017.1327965.
Bai, T., Lian, L. H., Wu, Y. L., Wan, Y., & Nan, J. X. (2013). Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells. International Immunopharmacology, 15, 275-281. https://doi.org/10.1016/j.intimp.2012.12.020.
Bataller, R., & Brenner, D. A. (2005). Liver fibrosis. The Journal of Clinical Investigation, 115(2), 209-218. https://doi.org/10.1172/JCI24282.
Benyon, R. C., & Iredale, J. P. (2000). Is liver fibrosis reversible? Gut, 46(4), 443-446. https://doi.org/10.1136/gut.46.4.443.
Broering, R., Lu, M., & Schlaak, J. F. (2011). Role of toll-like receptors in liver health and disease. Clinical Science, 121(10), 415-426. https://doi.org/10.1042/CS20110065.
Burnstock, G., & Knight, G. E. (2018). The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signalling, 14(1), 1-18. https://doi.org/10.1007/s11302-017-9593-0.
Carmi, Y., Prestwood, T. R., Spitzer, M. H., Linde, I. L., Chabon, J., Reticker-Flynn, N. E., … Engleman, E. G. (2016). Akt and SHP-1 are DC-intrinsic checkpoints for tumor immunity. Journal of Clinical Investigation Insight, 1(18), e89020. https://doi.org/10.1172/jci.insight.89020.
Chen, K., Sun, W. J., Jiang, Y., Chen, B., Zhao, Y. Y., Sun, J., … Qi, R. M. (2017). Ginkgolide B suppresses TLR4-mediated inflammatory response by inhibiting the phosphorylation of JAK2/STAT3 and p38 MAPK in high glucose-treated HUVECs. Oxidative Medicine and Cellular Longevity, 2017, 9371602. https://doi.org/10.1155/2017/9371602.
Cubero, F. J. (2016). Shutting off inflammation: A novel switch on hepatic stellate cells. Hepatology, 63(4), 1086-1089. https://doi.org/10.1002/hep.28442.
Fabregat, I., & Caballero-Díaz, D. (2018). Transforming growth factor-β-induced cell plasticity in liver fibrosis and Hepatocarcinogenesis. Frontiers in Oncology, 8, 357. https://doi.org/10.3389/fonc.2018.00357.
Friedman, S. L. (2003). Liver fibrosis-from bench to bedside. Journal of Hepatology, 38, S38-S53. https://doi.org/10.1016/s0168-8278(02)00429-4.
Friedman, S. L. (2008). Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews, 88(1), 125-172. https://doi.org/10.1152/physrev.00013.2007.
Friedman, S. L. (2012). Fibrogenic cell reversion underlies fibrosis regression in liver. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9230-9231. https://doi.org/10.1073/pnas.1206645109.
Ghantous, A., Ansam, S., Zdebko, H., & Darwiche, N. (2013). Parthenolide: From plant shoots to cancer roots. Drug Discovery Today, 18(17-18), 894-905. https://doi.org/10.1016/j.drudis.2013.05.005.
Gruffaz, M., Vasan, K., Tan, B., Silva, S. R. D., & Gao, J. S. (2017). TLR4-mediated inflammation promotes KSHV-induced cellular transformation and tumor genesis by activating the STAT3 pathway. Cancer Research, 77(24), 7094-7108. https://doi.org/10.1158/0008-5472.CAN-17-2321.
Gurung, P., Li, B., Subbarao Malireddi, R. K., Lamkanfi, M., Geiger, T. L., & Kanneganti, T. D. (2015). Chronic TLR stimulation controls NLRP3 Inflammasome activation through IL-10 mediated regulation of NLRP3 expression and Caspase-8 activation. Scientific Reports, 5, 14488. https://doi.org/10.1038/srep14488.
Han, J., Ye, S. J., Zou, C., Chen, T. W., Wang, J. Y., Li, J. L., … Liang, G. (2018). Angiotensin II causes biphasic STAT3 activation through TLR4 to initiate cardiac remodeling. Hypertension, 72(6), 1301-1311. https://doi.org/10.1161/HYPERTENSIONAHA.118.11860.
Heldin, C. H., & Moustakas, A. (2016). Signaling receptors for TGF-β family members. Cold Spring Harbor Perspectives in Biology, 8(8), a022053. https://doi.org/10.1101/cshperspect.a022053.
Hirano, T., Ishihara, K., & Hibi, M. (2000). Roles of STAT3 in mediating the cell growth, dierentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene, 19(21), 2548-2556. https://doi.org/10.1038/sj.onc.1203551.
Kawaratani, H., Moriya, K., Namisaki, T., Uejima, M., Kitade, M., Takeda, T., … Yoshiji, H. (2017). Therapeutic strategies for alcoholic liver disease: Focusing on inflammation and fibrosis (review). International Journal of Molecular Medicine, 40(2), 263-270. https://doi.org/10.3892/ijmm.2017.3015.
Kisseleva, T., & Brenner, D. A. (2006). Hepatic stellate cells and the reversal of fibrosis. Journal of Gastroenterology and Hepatology, 21(Suppl 3), S84-S87. https://doi.org/10.1111/j.1440-1746.2006.04584.x.
Lee, U. E., & Friedman, S. L. (2011). Mechanisms of hepatic fibrogenesis. Best Practice & Research. Clinical Gastroenterology, 25(2), 195-206. https://doi.org/10.1016/j.bpg.2011.02.005.
Li, R., Hu, Z., Sun, S. Y., Chen, Z. G., Owonikoko, T. F., Sica, G. L., … Deng, X. M. (2013). Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Molecular Cancer Therapeutics, 12(10), 2200-2212. https://doi.org/10.1158/1535-7163.MCT-13-0095.
Mahmoud, A. M., Desouky, E. M., Hozayen, W. G., Bin-Jumah, M., El-Nahass, E. S., Soliman, H. A., & Farghali, A. A. (2019). Mesoporous silica nanoparticles trigger liver and kidney injury and fibrosis via altering TLR4/NF-κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats. Biomolecules, 9(10), E528. https://doi.org/10.3390/biom9100528.
Mair, M., Blaas, L., Österreicher, C. H., Casanova, E., & Eferl, R. (2011). JAK-STAT signaling in hepatic fibrosis. Frontiers in Bioscience (Landmark Edition), 16, 2794-2811. https://doi.org/10.2741/3886.
Paik, Y. H., Schwabe, R. F., Bataller, R., Russo, M. P., Jobin, C., & Brenner, D. A. (2003). Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 37(5), 1043-1055. https://doi.org/10.1053/jhep.2003.50182.
Ren, X. M., Duan, L., He, Q., Zhang, Z., Zhou, Y., Wu, D. H., … Ding, K. (2010). Identification of Niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Medicinal Chemistry Letters, 1(9), 454-459. https://doi.org/10.1021/ml100146z.
Seifert, L., Deutsch, M., Alothman, S., Alqunaibit, D., Werba, G., Pansari, M., … Miller, G. (2015). Dectin-1 regulates hepatic fibrosis and Hepatocarcinogenesis by suppressing TLR4 signaling pathways. Cell Reports, 13(9), 1909-1921. https://doi.org/10.1016/j.celrep.2015.10.058.
Seki, E., & Schwabe, R. F. (2015). Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology, 61(3), 1066-1079. https://doi.org/10.1002/hep.27332.
Song, J., Han, X., Yao, Y. L., Li, Y. M., Zhang, J., Shao, D. Y., … Wu, Y. L. (2018). Acanthoic acid suppresses lipin1/2 via TLR4 and IRAK4 signaling pathways in EtOH- and lipopolysaccharide-induced hepatic lipogenesis. The Journal of Pharmacy and Pharmacology, 70(3), 393-403. https://doi.org/10.1111/jphp.12877.
Wang, D., Wang, H. F., Fu, S. Y., Cheng, X. X., Yang, F. R., Zhang, Q., … Zhang, R. X. (2016). Parthenolide ameliorates Concanavalin A-induced acute hepatitis in mice and modulates the macrophages to an anti-inflammatory state. International Immunopharmacology, 38, 132-138. https://doi.org/10.1016/j.intimp.2016.05.024.
You, M., Jogasuria, A., Lee, K., Wu, J., Zhang, Y., Lee, Y. K., & Sadana, P. (2017). Signal transduction mechanisms of alcoholic fatty liver disease: Emerging role of Lipin-1. Current Molecular Pharmacology, 10(3), 226-236. https://doi.org/10.2174/1874467208666150817112109.
Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: A leading role for STAT3. Nature Reviews. Cancer, 9(11), 798-809. https://doi.org/10.1038/nrc2734.
Grant Information:
20180201065YY Department of Science and Technology of Jilin Province; 20180414048GH Department of Science and Technology of Jilin Province; 20190304084YY Department of Science and Technology of Jilin Province; 81660689 National Natural Science Foundation of China; 81760668 National Natural Science Foundation of China; 81973555 National Natural Science Foundation of China; 2020023 the Innovation and Entrepreneurship Talent Project of Jilin Province
Contributed Indexing:
Keywords: crosstalk of TLR4 and STAT3; hepatic fibrosis; hepatic stellate cells; inflammation; parthenolide
Substance Nomenclature:
0 (STAT3 Transcription Factor)
0 (Sesquiterpenes)
0 (Toll-Like Receptor 4)
2RDB26I5ZB (parthenolide)
Entry Date(s):
Date Created: 20210712 Date Completed: 20211026 Latest Revision: 20211026
Update Code:
20240105
DOI:
10.1002/ptr.7214
PMID:
34250656
Academic Journal
The current study focused on the regulatory effects of parthenolide (PNL), a bioactive component derived from Chrysanthemum parthenium L., against hepatic fibrosis via regulating the crosstalk of toll-like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) in activated hepatic stellate cells (HSCs). HSCs or Raw 264.7 macrophages were activated by TGF-β or LPS for 1 hr, respectively, and then treated with PNL, CLI-095 (TLR4 inhibitor), or Niclosamide (STAT3 inhibitor) for the indicated time to detect the crosstalk of TLR4 and STAT3. PNL significantly decreased the expressions of α-SMA, collagen I, and the ratio of TIMP1 and MMP13 in TGF-β-activated HSCs. PNL significantly reduced the releases of pro-inflammatory cytokines, including IL-6, IL-1β, IL-1α, IL-18, and regulated signaling P2X7r/NLRP3 axis activation. PNL obviously induced the apoptosis of activated HSCs by regulating bcl-2 and caspases family. PNL significantly inhibited the expressions of TLR4 and STAT3, including their downstream signaling. PNL could regulate the crosstalk of TLR4 and STAT3, which were verified by their inhibitors in activated HSCs or Raw 264.7 cell macrophages. Thus, PNL could decrease the expressions of fibrosis markers, reduce the releases of inflammatory cytokines, and also induce the apoptosis of activated HSCs. In conclusion, PNL could bi-directionally inhibit TLR4 and STAT3 signaling pathway, suggesting that blocking the crosstalk of TLR4 and STAT3 might be the potential mechanism of PNL against hepatic fibrosis.
(© 2021 John Wiley & Sons Ltd.)

We use cookies to help identify your computer so we can tailor your user experience, track shopping basket contents and remember where you are in the order process.