Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evolutionary management of coral-reef fisheries using phylogenies to predict density dependence.

Tytuł:
Evolutionary management of coral-reef fisheries using phylogenies to predict density dependence.
Autorzy:
Houk P; UOG Station, University of Guam Marine Laboratory, Mangilao, 96923, Guam.
Lemer S; UOG Station, University of Guam Marine Laboratory, Mangilao, 96923, Guam.
Hernandez-Ortiz D; UOG Station, University of Guam Marine Laboratory, Mangilao, 96923, Guam.
Cuetos-Bueno J; UOG Station, University of Guam Marine Laboratory, Mangilao, 96923, Guam.; The Nature Conservancy, Micronesia Program, Mangilao, 96923, Guam.
Źródło:
Ecological applications : a publication of the Ecological Society of America [Ecol Appl] 2021 Oct; Vol. 31 (7), pp. e02409. Date of Electronic Publication: 2021 Aug 11.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: Washington, D.C. : Ecological Society of America
Original Publication: Tempe, AZ : The Society, 1991-
MeSH Terms:
Anthozoa*
Fisheries*
Animals ; Conservation of Natural Resources ; Coral Reefs ; Ecosystem ; Fishes ; Phylogeny
References:
Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai, G. Grothendieck, P. Green, and M. B. J. C. Bolker. 2015. Package ‘lme4’. 12:2. http://dk.archive.ubuntu.com/pub/pub/cran/web/packages/lme4/lme4.pdf.
Bellwood, D. 1995. Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef. Australia. Marine Biology 121:419-429.
Bellwood, D., A. Hoey, and T. Hughes. 2012. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proceedings of the Royal Society B 279:1621-1629.
Choat, J. H., and D. R. Robertson. 2002. Age-based studies on coral reef fishes. In Coral reef fishes: dynamics and diversity in a complex system. Academic Press, San Diego, California, USA.
Cuetos-Bueno, J., D. Hernandez-Ortiz, C. Graham, and P. Houk. 2018. Human and environmental gradients predict catch, effort, and species composition in a large Micronesian coral-reef fishery. PLoS One 13:e0198068.
Cuetos-Bueno, J., D. Hernandez-Ortiz, and P. Houk. 2019. Co-evolution of “race-to-fish” dynamics and declining size structures in an expanding commercial coral-reef fishery. Reviews in Fish Biology and Fisheries 29:147-160.
Darwin, C. 1859. On the origin of species. Routledge.
Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792-1797.
Godoy, O., N. J. Kraft, and J. M. J. E. L. Levine. 2014. Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters 17:836-844.
Hamilton, R. J., A. Hughes, C. J. Brown, T. Leve, and W. J. C. R. Kama. 2019. Community-based management fails to halt declines of bumphead parrotfish and humphead wrasse in Roviana Lagoon. Solomon Islands. 38:455-465.
Hordyk, A., K. Ono, S. Valencia, N. Loneragan, and J. Prince. 2014. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES Journal of Marine Science 72:217-231.
Houk, P., et al. 2015. The Micronesia challenge: assessing the relative contribution of stressors on coral reefs to facilitate science-to-management feedback. PLoS One 10:e0130823.
Houk, P., J. Cuetos-Bueno, A. Kerr, and K. McCann. 2018b. Linking fishing pressure with ecosystem thresholds and food web stability on coral reefs. Ecological Monographs 88:109-119.
Houk, P., J. Cuetos-Bueno, B. Tibbatts, and J. Gutierrez. 2018a. Variable density dependence and the restructuring of coral-reef fisheries across 25 years of exploitation. Scientific Reports 8:5725.
Houk, P., and C. J. M. E. P. S. Musburger. 2013. Trophic interactions and ecological stability across coral reefs in the Marshall Islands. Marine Ecology Progress Series 488:23-34.
Houk, P., K. Rhodes, J. Cuetos-Bueno, S. Lindfield, V. Fread, and J. McIlwain. 2012. Commercial coral-reef fisheries across Micronesia: a need for improving management. Coral Reefs 31:13-26.
Houk, P., R. Tilfas, M. Luckymis, O. Nedlic, B. Ned, J. Cuetos-Bueno, and M. McLean. 2017. An applied framework to assess exploitation and guide management of coral-reef fisheries. Ecosphere 8:e01727.
Hutchinson, G. E. J. T. A. N. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93:145-159.
Jennings, S., S. P. Greenstreet, and J. D. Reynolds. 1999a. Structural change in an exploited fish community: a consequence of differential fishing effects on species with contrasting life histories. Journal of Animal Ecology 68:617-627.
Jennings, S., J. D. Reynolds, and N. V. Polunin. 1999b. Predicting the vulnerability of tropical reef fishes to exploitation with phylogenies and life histories. Conservation Biology 13:1466-1475.
Knouft, J. H., J. B. Losos, R. E. Glor, and J. J. Kolbe. 2006. Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87:S29-S38.
Levin, P. S., and G. W. Stunz. 2005. Habitat triage for exploited fishes: Can we identify essential “Essential Fish Habitat?” Estuarine, Coastal and Shelf Science 64:70-78.
Lorenzen, K., and K. Enberg. 2002. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons. Proceedings of the Royal Society of London 269:49-54.
Martin, S. L., K. S. Van Houtan, T. T. Jones, C. F. Aguon, J. T. Gutierrez, R. B. Tibbatts, S. B. Wusstig, J. D. Bass. 2016. Five decades of marine Megafauna surveys from Micronesia. Frontiers in Marine Science 2:116.
McLean, M., J. Cuetos-Bueno, O. Nedlic, M. Luckymiss, and P. Houk. 2016. Local stressors, resilience, and shifting baselines on coral reefs. PLoS One 11:e0166319.
Nadon, M. O., J. S. Ault, I. D. Williams, S. G. Smith, and G. T. DiNardo. 2015. Length-based assessment of coral reef fish populations in the Main and Northwestern Hawaiian Islands. PLoS One 10:e0133960.
Patrick, W. S., and J. S. Link. 2015. Myths that continue to impede progress in ecosystem-based fisheries management. Fisheries 40:155-160.
Prince, J., S. Victor, V. Kloulchad, and A. J. F. R. Hordyk. 2015. Length based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau. Fisheries Research 171:42-58.
Rhodes, K. L., D. X. Hernandez-Ortiz, J. Cuetos-Bueno, M. Ioanis, W. Washington, and R. Ladore. 2018. A 10-year comparison of the Pohnpei, Micronesia, commercial inshore fishery reveals an increasingly unsustainable fishery. Fisheries Research 204:156-164.
Ronquist, F., M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539-542.
Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690.
Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731-2739.
Taylor, B., and J. H. Choat. 2014. Comparative demography of commercially important parrotfish species from Micronesia. Journal of Fish Biology 84:383-402.
Taylor, B., K. Rhodes, A. Marshell, and J. McIlwain. 2014. Age-based demographic and reproductive assessment of orangespine Naso lituratus and bluespine Naso unicornis unicornfishes. Journal of Fish Biology 85:901-916.
Violle, C., D. R. Nemergut, Z. Pu, and L. Jiang. 2011. Phylogenetic limiting similarity and competitive exclusion. Ecology Letters 14:782-787.
Welsh, J., and D. J. C. R. Bellwood. 2012. Spatial ecology of the steephead parrotfish (Chlorurus microrhinos): an evaluation using acoustic telemetry. Coral Reefs 31:55-65.
Contributed Indexing:
Keywords: density dependence; fisheries management; niche; phylogenies
Entry Date(s):
Date Created: 20210713 Date Completed: 20211020 Latest Revision: 20220531
Update Code:
20240105
DOI:
10.1002/eap.2409
PMID:
34255400
Czasopismo naukowe
Harvesting models are based upon the ideology that removing large, old individuals provides space for young, fast-growing counterparts that can maximize (fisheries) yields while maintaining population stability and ecosystem function. Yet, this compensatory density dependent response has rarely been examined in multispecies systems. We combined extensive data sets from coral-reef fisheries across a suite of Pacific islands and provided unique context to the universal assumptions of compensatory density dependence. We reported that size-and-age truncation only existed for 49% of target coral-reef fishes exposed to growing fishing pressure across a suite of Pacific islands. In contrast, most of the remaining species slowly disappeared from landings and reefs with limited change to their size structure (i.e., little to no compensation), often becoming replaced by smaller-bodied sister species. To understand these remarkable and disparate differences, we constructed phylogenies for dominant fish families and discovered that large patristic distances between sister species, or greater phylogenetic isolation, predicted size-and-age truncation. Isolated species appeared to have greater niche dominance or breadth, supported by their faster growth rates compared to species with similar sizes and within similar guilds, and many also have group foraging behavior. In contrast, closely related species may have more restricted, realized niches that led to their disappearance and replacement. We conclude that phylogenetic attributes offered novel guidance to proactively manage multispecies fisheries and improve our understanding of ecological niches and ecosystem stability.
(© 2021 by the Ecological Society of America.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies