Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Importance of complex blood flow in the assessment of aortic regurgitation severity using phase contrast magnetic resonance imaging.

Tytuł :
Importance of complex blood flow in the assessment of aortic regurgitation severity using phase contrast magnetic resonance imaging.
Autorzy :
Truedsson F; Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden. .; Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden. .; Sahlgrenska University Hospital, MR-Centre, Bruna stråket 13, 413 45, Gothenburg, Sweden. .
Polte CL; Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.; Department of Cardiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.; Department of Clinical Physiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.; Department of Radiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
Gao SA; Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.; Department of Clinical Physiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
Johnsson ÅA; Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.; Department of Radiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
Bech-Hanssen O; Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.; Department of Clinical Physiology, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
Lagerstrand KM; Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.; Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
Pokaż więcej
Źródło :
The international journal of cardiovascular imaging [Int J Cardiovasc Imaging] 2021 Jul 17. Date of Electronic Publication: 2021 Jul 17.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Boston : Kluwer Academic Publishers, c2001-
References :
Vahanian A, Alfieri O, Andreotti F et al (2013) Guidelines on the management of valvular heart disease (version 2012). The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). G Ital Cardiol 14:167–214.
Nishimura RA, Otto CM, Bonow RO et al (2014) 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: executive summary. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:e57–e185. (PMID: 2460319110.1016/j.jacc.2014.02.536)
Lancellotti P, Tribouilloy C, Hagendorff A et al (2010) European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease). Eur J Echocardiogr 11:223–244. (PMID: 2037526010.1093/ejechocard/jeq030)
Zoghbi WA, Enriquez-Sarano M, Foster E et al (2003) American Society of Echocardiography: recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. Eur J Echocardiogr 4:237–261. (PMID: 10.1016/j.euje.2003.07.001)
Zoghbi WA, Adams D, Bonow RO et al (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the society for cardiovascular magnetic resonance. J Am Soc Echocardiogr 30:303–371. (PMID: 283146232831462310.1016/j.echo.2017.01.007)
Myerson SG, Francis J, Neubauer S (2011) Cardiovascular magnetic resonance (Oxford Specialist Handbooks in Cardiology). Oxford University Press, Oxford.
Myerson SG (2012) Heart valve disease: investigation by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:7–7. (PMID: 22260363330560910.1186/1532-429X-14-7)
Barker AJ, Markl M, Burk J et al (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5:457–466. (PMID: 2273042010.1161/CIRCIMAGING.112.973370)
Hope MD, Hope TA, Meadows AK et al (2010) Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255:53–61. (PMID: 2030844410.1148/radiol.09091437)
Barker AJ, Lanning C, Shandas R (2010) Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng 38:788–800. (PMID: 1995331910.1007/s10439-009-9854-3)
Bech-Hanssen O, Svensson F, Polte CL et al (2018) Characterization of complex flow patterns in the ascending aorta in patients with aortic regurgitation using conventional phase-contrast velocity MRI. Int J Cardiovasc Imaging 34:419–429. (PMID: 2887134810.1007/s10554-017-1239-3)
Kilner PJ, Gatehouse PD, Firmin DN (2007) Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson 9:723–728. (PMID: 1761365510.1080/10976640701465090)
Iwamoto Y, Inage A, Tomlinson G et al (2014) Direct measurement of aortic regurgitation with phase-contrast magnetic resonance is inaccurate: proposal of an alternative method of quantification. Pediatr Radiol 44:1358–1369. (PMID: 2493966910.1007/s00247-014-3017-x)
Chatzimavroudis GP, Walker PG, Oshinski JN et al (1997) Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Magn Reson Med 37:545–551. (PMID: 909407610.1002/mrm.1910370412)
Kozerke S, Scheidegger MB, Pedersen EM, Boesiger P (1999) Heart motion adapted cine phase-contrast flow measurements through the aortic valve. Magn Reson Med 42:970–978. (PMID: 1054235710.1002/(SICI)1522-2594(199911)42:5<970::AID-MRM18>3.0.CO;2-I)
Kramer CM, Barkhausen J, Flamm SD et al (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15:91. (PMID: 24103764385195310.1186/1532-429X-15-91)
Gatehouse PD, Rolf MP, Graves MJ et al (2010) Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5. (PMID: 20074359281865710.1186/1532-429X-12-5)
Bland JM, Douglas GA (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310. (PMID: 10.1016/S0140-6736(86)90837-8)
Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J (1989) Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol 64:507–512. (PMID: 277379510.1016/0002-9149(89)90430-X)
Heiberg E, Sjögren J, Ugander M et al (2010) Design and validation of Segment - freely available software for cardiovascular image analysis. BMC Med Imaging 10:1–13. (PMID: 20064248282281510.1186/1471-2342-10-1)
Sigovan M, Hope MD, Dyverfeldt P, Saloner D (2011) Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J Magn Reson Imaging 34:1226–1230. (PMID: 2192838710.1002/jmri.22800)
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70.
Barker AJ, Markl M, Bürk J et al (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5:457–466. (PMID: 2273042010.1161/CIRCIMAGING.112.973370)
Bürk J, Blanke P, Stankovic Z et al (2012) Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson 14:84–84. (PMID: 23237187353424910.1186/1532-429X-14-84)
Markl M, Draney MT, Hope MD et al (2004) Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J Comput Assist Tomogr 28:459–468. (PMID: 1523237610.1097/00004728-200407000-00005)
Hope TA, Markl M, Wigstrom L et al (2007) Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J Magn Reson Imaging 26:1471–1479. (PMID: 1796889210.1002/jmri.21082)
Chatzimavroudis GP, Walker PG, Oshinski JN et al (1997) The importance of slice location on the accuracy of aortic regurgitation measurements with magnetic resonance phase velocity mapping. Ann Biomed Eng 25:644–652. (PMID: 923697710.1007/BF02684842)
Polte CL, Bech-Hanssen O, Johnsson ÅA, Gao SA, Lagerstrand KM (2015) Mitral regurgitation quantification by cardiovascular magnetic resonance: a comparison of indirect quantification methods. Int J Cardiovasc Imaging 31:1223–1231. (PMID: 2600138010.1007/s10554-015-0681-3)
Lee JC, Branch KR, Hamilton-Craig C, Krieger EV (2018) Evaluation of aortic regurgitation with cardiac magnetic resonance imaging: a systematic review. Heart 104:103–110. (PMID: 2882298210.1136/heartjnl-2016-310819)
Papavassiliu T, Kuhl HP, Schroder M et al (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236:57–64. (PMID: 1595585010.1148/radiol.2353040601)
Marcus JT, Gotte MJ, DeWaal LK et al (1999) The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis. J Cardiovasc Magn Reson 1:1–6. (PMID: 1155033710.3109/10976649909080828)
Moran PR (1982) A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1:197–203. (PMID: 692720610.1016/0730-725X(82)90170-9)
Nayler GL, Firmin DN, Longmore DB (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 10:715–722. (PMID: 352824510.1097/00004728-198609000-00001)
Dumoulin L, SouzaFeng SPH (1987) Multiecho magnetic resonance angiography. Magn Reson Med 5:47–57. (PMID: 365749410.1002/mrm.1910050106)
Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR (1991) Phase contrast cine magnetic resonance imaging. Magn Reson Q 7:229–254. (PMID: 1790111)
Pelc NJ, Sommer FG, Li KC et al (1994) Quantitative magnetic resonance flow imaging. Magn Reson Q 10:125–147. (PMID: 7811608)
Ståhlberg F, Söndergaard L, Thomsen C (1995) MR flow quantification with cardiovascular applications: a short overview. Acta Paediatr 84:49–56. (PMID: 10.1111/j.1651-2227.1995.tb13844.x)
Buonocore MH, Bogren H (1992) Factors influencing the accuracy and precision of velocity-encoded phase imaging. Magn Reson Med 26:141–154. (PMID: 162556010.1002/mrm.1910260115)
Bernstein MA, Zhou XJ, Polzin JA et al (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39:300–308. (PMID: 946971410.1002/mrm.1910390218)
Thunberg P, Wigstrom L, Ebbers T, Karlsson M (2002) Correction for displacement artifacts in 3D phase contrast imaging. J Magn Reson Imaging 16:591–597. (PMID: 1241203710.1002/jmri.10187)
Polte CL, Gao SA, Johnsson ÅA, Lagerstrand KM, Bech-Hanssen O (2017) Characterization of chronic aortic and mitral regurgitation undergoing valve surgery using cardiovascular magnetic resonance. Am J Cardiol 119:2061–2068. (PMID: 2845003910.1016/j.amjcard.2017.03.041)
Myerson SG, d’Arcy J, Mohiaddin R et al (2012) Aortic regurgitation quantification using cardiovascular magnetic resonance: association with clinical outcome. Circulation 126:1452–1460. (PMID: 2287937110.1161/CIRCULATIONAHA.111.083600)
Sekar M, Carr J, Berliner J, Mikati I (2008) 301 accurate quantification of aortic regurgitation: comparison of MRI with doppler echocardiography. J Cardiovasc Magn Reson 10:A104. (PMID: 10.1186/1532-429X-10-S1-A104)
Bolen MA, Popovic ZB, Rajiah P et al (2011) Cardiac MR assessment of aortic regurgitation: holodiastolic flow reversal in the descending aorta helps stratify severity. Radiology 260:98–104. (PMID: 2147470610.1148/radiol.11102064)
Grant Information :
ALFGBG-792231, 813301, and 772931 Swedish state
Contributed Indexing :
Keywords: Aortic regurgitation; Assessment of aortic regurgitation; PC-MRI; Phase contrast magnetic resonance imaging
Entry Date(s) :
Date Created: 20210717 Latest Revision: 20210717
Update Code :
20210717
DOI :
10.1007/s10554-021-02341-w
PMID :
34273066
Czasopismo naukowe
This study aimed to investigate if and how complex flow influences the assessment of aortic regurgitation (AR) using phase contrast MRI in patients with chronic AR. Patients with moderate (n = 15) and severe (n = 28) chronic AR were categorized into non-complex flow (NCF) or complex flow (CF) based on the presence of systolic backward flow volume. Phase contrast MRI was performed repeatedly at the level of the sinotubular junction (Ao1) and 1 cm distal to the sinotubular junction (Ao2). All AR patients were assessed to have non-severe AR or severe AR (cut-off values: regurgitation volume (RVol) ≥ 60 ml and regurgitation fraction (RF) ≥ 50%) in both measurement positions. The repeatability was significantly lower, i.e. variation was larger, for patients with CF than for NCF (≥ 12 ± 12% versus ≥ 6 ± 4%, P ≤ 0.03). For patients with CF, the repeatability was significantly lower at Ao2 compared to Ao1 (≥ 21 ± 20% versus ≥ 12 ± 12%, P ≤ 0.02), as well as the assessment of regurgitation (RVol: 42 ± 34 ml versus 54 ± 42 ml, P < 0.001; RF: 30 ± 18% versus 34 ± 16%, P = 0.01). This was not the case for patients with NCF. The frequency of patients that changed in AR grade from severe to non-severe when the position of the measurement changed from Ao1 to Ao2 was higher for patients with CF compared to NCF (RVol: 5/26 (19%) versus 1/17 (6%), P = 0.2; RF: 4/26 (15%) versus 0/17 (0%), P = 0.09). Our study shows that complex flow influences the quantification of chronic AR, which can lead to underestimation of AR severity when using PC-MRI.
(© 2021. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies