Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Quantile-specific heritability of plasminogen activator inhibitor type-1 (PAI-1, aka SERPINE1) and other hemostatic factors.

Tytuł:
Quantile-specific heritability of plasminogen activator inhibitor type-1 (PAI-1, aka SERPINE1) and other hemostatic factors.
Autorzy:
Williams PT; Lawrence Berkeley National Laboratory, Molecular Biophysics & Integrated Bioimaging Division, Berkeley, CA, USA.
Źródło:
Journal of thrombosis and haemostasis : JTH [J Thromb Haemost] 2021 Oct; Vol. 19 (10), pp. 2559-2571. Date of Electronic Publication: 2021 Aug 08.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2023- : [New York] : Elsevier
Original Publication: Oxford : Blackwell Pub.
MeSH Terms:
Hemostatics*
Plasminogen Activator Inhibitor 1*/genetics
Alleles ; Fibrinolysis ; Genotype ; Humans
References:
Sprengers ED, Kluft C. Plasminogen activator inhibitors. Blood. 1987;69:381-387.
Hoekstra T, Geleijnse JM, Schouten EG, Kluft C. Plasminogen activator inhibitor-type 1: its plasma determinants and relation with cardiovascular risk. Thromb Haemost. 2004;91:861-872.
Kluft C, Verheijen JH, Jie AF, et al. The postoperative fibrinolytic shutdown: a rapidly reverting acute phase pattern for the fast-acting inhibitor of tissue-type plasminogen activator after trauma. Scand J Clin Lab Invest. 1985;45:605-610.
Mlynarska A, Waszyrowski T, Kasprzak JD. Increase in plasma plasminogen activators inhibitor type 1 concentration after fibrinolytic treatment in patients with acute myocardial infarction is associated with 4G/5G polymorphism of PAI-1 gene. J Thromb Haemost. 2006;4:1361-1366.
Ye Z, Liu EH, Higgins JP, et al. Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls. Lancet. 2006;367:651-658.
Tsantes AE, Nikolopoulos GK, Bagos PG, et al. Plasminogen activator inhibitor-1 4G/5G polymorphism and risk of ischemic stroke: a meta-analysis. Blood Coagul Fibrinolysis. 2007;18:497-504.
Tsantes AE, Nikolopoulos GK, Bagos PG, et al. Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and venous thrombosis: a meta-analysis. Thromb Haemost. 2007;97:907-913.
Bastard JP, Pieroni L, Hainque B. Relationship between plasma plasminogen activator inhibitor-1 and insulin resistance. Diabet Metab Res Rev. 2000;16:192-201.
Sartori MT, Vettor R, De Pergola G, et al. Role of the 4G/5G polymorphism of PaI-1 gene promoter on PaI-1 levels in obese patients: influence of fat distribution and insulin-resistance. Thromb Haemost. 2001;86:1161-1169.
Juhan-Vague I, Pyke SD, Alessi MC, Jespersen J, Haverkate F, Thompson SG. Fibrinolytic factors and the risk for myocardial infarction or sudden death in patients with angina pectoris. Circulation. 1996;94:2057-2063.
Best LG, North KE, Tracy RP, et al. Genetic determination of acute phase reactant levels: the strong heart study. Hum Hered. 2004;58:112-116.
Freeman MS, Mansfield MW, Barrett JH, Grant PJ. Genetic contribution to circulating levels of hemostatic factors in healthy families with effects of known genetic polymorphisms on heritability. Arterioscler Thromb Vasc Biol. 2002;22:506-510.
Pankow JS, Folsom AR, Province MA, et al. Segregation analysis of plasminogen activator inhibitor-1 and fibrinogen levels in the NHLBI family heart study. Arterioscler Thromb Vasc Biol. 1998;18:1559-1567.
Hong Y, Pedersen NL, Egberg N, de Faire U. Moderate genetic influences on plasma levels of plasminogen activator inhibitor-1 and evidence of genetic and environmental influences shared by plasminogen activator inhibitor-1, triglycerides, and body mass index. Arterioscler Thromb Vasc Biol. 1997;17:2776-2782.
Peetz D, Victor A, Adams P, et al. Genetic and environmental influences on the fibrinolytic system: a twin study. Thromb Haemost. 2004;92:344-351.
de Lange M, Snieder H, Ariëns RA, Spector TD, Grant PJ. The genetics of haemostasis: a twin study. Lancet. 2001;357:101-105.
Cesari M, Sartori MT, Patrassi GM, Vettore S, Rossi GP. Determinants of plasma levels of plasminogen activator inhibitor-1: a study of normotensive twins. Arterioscler Thromb Vasc Biol. 1999;19:316-320.
Koenker R, Hallock KF. Quantile regression. J. Economic Perspectives. 2001;15:143-156.
Gould WW. Quantile regression with bootstrapped standard errors. Stata Technical Bulletin. 1992;9:19-21.
White MJ, Kodaman NM, Harder RH, et al. Genetics of plasminogen activator inhibitor-1 (PAI-1) in a Ghanaian population. PLoS One. 2015;10:e0136379.
Williams PT. Quantile-specific heritability of total cholesterol and its pharmacogenetic and nutrigenetic implications. Int J Cardiol. 2020.
Williams PT. Quantile-specific heritability of high-density lipoproteins with implications for precision medicine. J Clin Lipid. 2020;14:448-458.e0.
Williams PT. Gene-environment interactions due to quantile-specific heritability of triglyceride and VLDL concentrations. Sci Rep. 2020;10:4486.
Williams PT. Quantile-specific heritability of sibling leptin concentrations and its implications for gene-environment interactions. Sci Rep. 2020;10:22152.
Williams PT. Quantile-dependent expressivity of plasma adiponectin concentrations may explain its sex-specific heritability, gene-environment interactions, and genotype-specific response to postprandial lipemia. PeerJ. 2020;8:e10099.
Williams PT. Quantile-dependent expressivity of serum C-reactive protein concentrations in family sets. PeerJ. 2021;9:e10914.
Williams PT. Quantile-specific penetrance of genes affecting lipoproteins, adiposity and height. PLoS One. 2012;7:e28764.
Williams PT. Quantile-dependent heritability of computed tomography, dual-energy x-ray absorptiometry, anthropometric, and bioelectrical measures of adiposity. Int J Obesity. 2020;44:2101-2112.
Williams PT. Quantile-specific heritability may account for gene-environment interactions involving coffee consumption. Behav Genet. 2020;50:119-126.
Williams PT. Quantile-specific heritability of intakes of alcohol but not other macronutrients. Behav Genet. 2020;2020(50):332-345.
Williams PT. Quantile-dependent expressivity of postprandial lipemia. PLoS One. 2020;15:e0229495.
Williams PT. Spirometric traits show quantile-dependent heritability, which may contribute to their gene-environment interactions with smoking and pollution. PeerJ. 2020;8:e9145. https://doi.org/10.7717/peerj.9145.
Huang J, Sabater-Lleal M, Asselbergs FW, et al. Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation. Blood. 2012;120:4873-4881.
Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol. 2006;110:281-290.
Splansky GL, Corey D, Yang Q, et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165:1328-1335.
Oishi K. Plasminogen activator inhibitor-1 and the circadian clock in metabolic disorders. Clin Exp Hypertens. 2009;31:208-219.
Velagaleti RS, Gona P, Larson MG, et al. Multimarker approach for the prediction of heart failure incidence in the community. Circulation. 2010;122:1700-1706.
Declerck PJ, Alessi MC, Verstreken M, Kruithof EKO, Juhan-Vague I, Collen D. Measurement of plasminogen activator inhibitor 1 in biologic fluids with a murine monoclonal antibody-based enzyme-linked immunosorbent assay. Blood. 1988;71:220-225.
Rånby M, Bergsdorf N, Nilsson T, Mellbring G, Winblad B, Bucht G. Age dependence of tissue plasminogen activator concentrations in plasma, as studied by an improved enzyme-linked immunosorbent assay. Clin Chem. 1986;32:2160-2165.
Tofler GH, Massaro J, O'Donnell CJ, et al. Plasminogen activator inhibitor and the risk of cardiovascular disease: the Framingham Heart Study. Thromb Res. 2016;140:30-35.
Feng D, Tofler GH, Larson MG, et al. Factor VII gene polymorphism, factor VII levels, and prevalent cardiovascular disease: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2000;20:593-600.
Penny W, Weinstem M, Salzman EW, Ware JA. Correlation of circulation von Willebrand factor levels with cardiovascular hemodynamics. Circulation. 1991;83:1630-1636.
Karlin S, Cameron EC, Williams PT. Sibling and parent-offspring correlation estimation with variable family size. Proc Natl Acad Sci USA. 1981;78:2664-2668.
Falconer DS, Mackay TFC. Introduction to Quantitative Genetics, 4th edn. Harlow, Essex, UK: Longmans Green; 1996.
Winer BJ, Brown DR, Michels KM. Statistical Principles in Experimental Design, 3rd edn. New York: McGraw-Hill; 1991.
Seguí R, Estellés A, Mira Y, et al. PAI-1 promoter 4G/5G genotype as an additional risk factor for venous thrombosis in subjects with genetic thrombophilic defects. Br J Haematol. 2000;111:122-128.
Sartori MT, Danesin C, Saggiorato G, et al. The PAI-1 gene 4G/5G polymorphism and deep vein thrombosis in patients with inherited thrombophilia. Clin Appl Thromb Hemost. 2003;9:299-307.
Pérez-Martínez P, Adarraga-Cansino MD, Fernández de la Puebla RA, et al. The -675 4G/5G polymorphism at the plasminogen activator inhibitor 1 (PAI-1) gene modulates plasma Plasminogen Activator Inhibitor 1 concentrations in response to dietary fat consumption. Br J Nutr. 2008;99:699-702.
Hoekstra T, Geleijnse JM, Schouten EG, Kluft C. Diurnal variation in PAI-1 activity predominantly confined to the 4G-allele of the PAI-1 gene. Thromb Haemost. 2002;88:794-798.
Dawson S, Wiman B, Hamsten A, Green F, Humphries S, Henney AM. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor (PAI-1) gene respond differently to interleukin-1 in hepG2 cell. J Biol Chem. 1993;268:10739-10745.
van Meijer M, Pannekoek H. Structure of plasminogen activator inhibitor-1 (PAI-1) and its function in fibrinolysis: an update. Fibrinolysis. 1995;9:263-276.
Henry M, Chomiki N, Scarabin PY, et al. Five frequent polymorphisms of the PAI-1 gene: lack of association between genotypes, PAI activity, and triglyceride levels in a healthy population. Arterioscler Thromb Vasc Biol. 1997;17:851-858.
Grancha S, Estellés A, Tormo G, et al. Plasminogen activator inhibitor-1 (PAI-1) promoter 4G/5G genotype and increased PAI-1 circulating levels in postmenopausal women with coronary artery disease. Thromb Haemost. 1999;81:516-521.
Williams PT. Quantile-dependent expressivity and gene-lifestyle interactions involving high-density lipoprotein cholesterol. Lifestyle Genom. 2021;14:1-19.
Sun W, Li ZR, Shi ZC, Zhang NF, Zhang YC. Changes in coagulation and fibrinolysis of post-SARS osteonecrosis in a Chinese population. Int Orthop. 2006;30:143-146.
Sun W, Li Z, Shi Z, et al. Relationship between post-SARS osteonecrosis and PAI-1 4G/5G gene polymorphisms. Eur J Orthop Surg Traumatol. 2014;24:525-529.
Gong LL, Fang LH, Wang HY, et al. Genetic risk factors for glucocorticoid-induced osteonecrosis: a meta-analysis. Steroids. 2013;78:401-408.
Glueck CJ, Fontaine RN, Gruppo R, et al. The plasminogen activator inhibitor-1 gene, hypofibrinolysis, and osteonecrosis. Clin Orthop Relat Res. 1999;366:133-146.
Glueck CJ, Freiberg RA, Fontaine RN, Tracy T, Wang P. Hypofibrinolysis, thrombophilia, osteonecrosis. Clin Orthop Relat Res. 2001;386:19-33.
Hermans PW, Hibberd ML, Booy R, et al. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group. Lancet. 1999;354:556-560.
Kornelisse RF, Hazelzet JA, Savelkoul HF, et al. The relationship between plasminogen activator inhibitor-1 and proinflammatory and counterinflammatory mediators in children with meningococcal septic shock. J Infect Dis. 1996;173:1148-1156.
Stegnar M, Uhrin P, Peternel P, et al. The 4G/5G sequence polymorphism in the promoter of plasminogen activator inhibitor-1 (PAI-1) gene: relationship to plasma PAI-1 level in venous thromboembolism. Thromb Haemost. 1998;79:975-979.
Rallidis LS, Gialeraki A, Merkouri E, et al. Reduced carriership of 4G allele of plasminogen activator inhibitor-1 4G/5G polymorphism in very young survivors of myocardial infarction. J Thromb Thrombolysis. 2010;29:497-502.
Alessi MC, Pieretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue. Possible link between visceral fat accumulation and vascular disease. Diabetes. 1997;46:860-867.
Shimomura I, Funahashi T, Takahashi M, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nature Med. 1996;2:800-803.
Eriksson P, Reynisdottir S, Lönnqvist F, Stemme V, Hamsten A, Arner P. Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals. Diabetologia. 1998;41:65-71.
Brown NJ, Murphey LJ, Srikuma N, Koschachuhanan N, Williams GH, Vaughan DE. Interactive effect of PAI-1 4G/5G genotype and salt intake on PAI-1 antigen. Arterioscler Thromb Vasc Biol. 2001;21:1071-1077.
Lin S, Huiya Z, Bo L, Wei W, Yongmei G. The plasminogen activator inhibitor-1 (PAI-1) gene -844 A/G and -675 4G/5G promoter polymorphism significantly influences plasma PAI-1 levels in women with polycystic ovary syndrome. Endocrine. 2009;36:503-509.
Byrne CD, Wareham NJ, Martensz ND, Humphries SE, Metcalfe JC, Grainger DJ. Increased PAI activity and PAI-1 antigen occurring with an oral fat load: associations with PAI-1 genotype and plasma active TGF-beta levels. Atherosclerosis. 1998;140:45-53.
Sanders TA, de Grassi T, Acharya J, Miller GJ, Humphries SE. Postprandial variations in fibrinolytic activity in middle-aged men are modulated by plasminogen activator inhibitor I 4G-675/5G genotype but not by the fat content of a meal. Am J Clin Nutr. 2004;79:577-581.
Eriksson P, Nilsson L, Karpe F, Hamsten A. Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 1998;8:20-26.
Panahloo A, Mohamed-Ali V, Lane A, Green F, Humphries SE, Yudkin JS. Determinants of plasminogen activator inhibitor 1 activity in treated NIDDM and its relation to a polymorphism in the plasminogen activator inhibitor 1 gene. Diabetes. 1995;44:37-42.
Kapiotis S, Jilma B, Quehenberger P, Ruzicka K, Handler S, Speiser W. Morning hypercoagulability and hypofibrinolysis: diurnal variations in circulating activated factor VII, prothrombin fragment F1β2, and plasmin-plasmin inhibitor complex. Circulation. 1997;96:19-21.
Maemura K, de la Monte SM, Chin MT, et al. CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem. 2000;275:36847-36851.
van der Bom JG, Bots ML, Haverkate F, Kluft C, Grobbee DE. The 4G5G polymorphism in the gene for PAI-1 and the circadian oscillation of plasma PAI-1. Blood. 2003;101:1841-1844.
Grant Information:
R21 ES020700 United States ES NIEHS NIH HHS; N01HC25195 United States HL NHLBI NIH HHS; HHSN268201500001I United States HL NHLBI NIH HHS
Contributed Indexing:
Keywords: SERPINE1; factor VII; gene-environment interaction; heritability; plasminogen activator inhibitor type-1; von Willebrand factor
Substance Nomenclature:
0 (Hemostatics)
0 (Plasminogen Activator Inhibitor 1)
0 (SERPINE1 protein, human)
Entry Date(s):
Date Created: 20210717 Date Completed: 20211025 Latest Revision: 20230829
Update Code:
20240105
DOI:
10.1111/jth.15468
PMID:
34273240
Czasopismo naukowe
Background: Plasminogen activator inhibitor type-1 (PAI-1, aka SERPINE1) is a moderately heritable glycoprotein that regulates fibrin clot dissolution (fibrinolysis).
Objectives: Test whether the heritabilities (h 2 ) of PAI-1 and other hemostatic factors are constant throughout their distribution or whether they are quantile-specific (i.e., a larger or smaller h 2 depending on whether their concentrations are high or low).
Methods: Quantile regression was applied to 5606 parent-offspring pairs and 5310 full siblings of the Framingham Heart Study. Quantile-specific heritability was estimated from the parent-offspring regression slope (β PO , h 2  = 2β PO /(1+r spouse )) and the full-sib regression slope (β FS , h 2  = {(1+8r spouse β FS ) 0.5 -1}/(2r spouse )).
Results: Heritability (h 2  ± SE) increased significantly with increasing percentiles of the offspring's age- and sex-adjusted PAI-1 distribution when estimated from β PO (p linear trend  = 0.0001): 0.09 ± 0.02 at the 10th, 0.09 ± 0.02 at the 25th, 0.16 ± 0.02 at the 50th, 0.29 ± 0.04 at the 75th, and 0.26 ± 0.08 at the 90th percentile of the PAI-1 distribution, and when estimated from β FS (p linear trend  = 6.5x10 -7 ). There was no significant evidence for quantile-specific heritability for factor VII (p linear trend  = 0.35), D-dimer (p linear trend  = 0.08), tPA (p linear trend  = 0.74), or von Willebrand factor (p linear trend  = 0.79).
Conclusion: Higher mean plasma PAI-1 antigen concentrations tend to accentuate genetic effects (quantile-dependent expressivity), which is consistent with the greater reported differences in PAI-1 concentrations between rs1799889 SERPINE1 (4G/5G) genotypes in patients with osteonecrosis, meningococcal sepsis, obesity, prior myocardial infarction, deep vein thrombosis, and polycystic ovarian syndrome than in healthy controls. It is also consistent with the greater increases in PAI-1 concentrations in 4G-allele carriers than 5G/5G homozygotes following fibrinolytic treatment, low-salt intake, and high saturated fat intake.
(Published 2021. This article is a U.S. Government work and is in the public domain in the USA.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies