Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cortical interaction of bilateral inputs is similar for noxious and innocuous stimuli but leads to different perceptual effects.

Tytuł:
Cortical interaction of bilateral inputs is similar for noxious and innocuous stimuli but leads to different perceptual effects.
Autorzy:
Northon S; Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.; CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada.
Deldar Z; Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.; CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada.
Piché M; Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada. .; CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada. .
Źródło:
Experimental brain research [Exp Brain Res] 2021 Sep; Vol. 239 (9), pp. 2803-2819. Date of Electronic Publication: 2021 Jul 19.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer Verlag
MeSH Terms:
Evoked Potentials, Somatosensory*
Laser-Evoked Potentials*
Brain ; Brain Mapping ; Electroencephalography ; Hand ; Humans
References:
Allison T, McCarthy G, Luby M, Puce A, Spencer DD (1996) Localization of functional regions of human mesial cortex by somatosensory evoked potential recording and by cortical stimulation. Electroencephalogr Clin Neurophysiol 100(2):126–140. https://doi.org/10.1016/0013-4694(95)00226-x. (PMID: 10.1016/0013-4694(95)00226-x8617151)
Beume LA, Kaller CP, Hoeren M, Kloppel S, Kuemmerer D, Glauche V, Umarova R et al (2015) Processing of bilateral versus unilateral conditions: evidence for the functional contribution of the ventral attention network. Cortex 66:91–102. https://doi.org/10.1016/j.cortex.2015.02.018. (PMID: 10.1016/j.cortex.2015.02.01825824980)
Bidet-Caulet A, Fischer C, Bauchet F, Aguera PE, Bertrand O (2007a) Neural substrate of concurrent sound perception: direct electrophysiological recordings from human auditory cortex. Front Hum Neurosci 1:5. https://doi.org/10.3389/neuro.09.005.2007. (PMID: 10.3389/neuro.09.005.200718958219)
Bidet-Caulet A, Fischer C, Besle J, Aguera PE, Giard MH, Bertrand O (2007b) Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. J Neurosci 27(35):9252–9261. https://doi.org/10.1523/jneurosci.1402-07.2007. (PMID: 10.1523/jneurosci.1402-07.2007177284396673135)
Chien JH, Liu CC, Kim JH, Markman TM, Lenz FA (2014) Painful cutaneous laser stimuli induce event-related oscillatory EEG activities that are different from those induced by nonpainful electrical stimuli. J Neurophysiol 112(4):824–833. https://doi.org/10.1152/jn.00209.2014. (PMID: 10.1152/jn.00209.2014248484644122748)
D’Amour S, Harris LR (2014) Contralateral tactile masking between forearms. Exp Brain Res 232(3):821–826. https://doi.org/10.1007/s00221-013-3791-y. (PMID: 10.1007/s00221-013-3791-y24306439)
D’Amour S, Harris LR (2016) Testing tactile masking between the forearms. J vis Exp 108:e53733. https://doi.org/10.3791/53733. (PMID: 10.3791/53733)
Defrin R, Tsedek I, Lugasi I, Moriles I, Urca G (2010) The interactions between spatial summation and DNIC: effect of the distance between two painful stimuli and attentional factors on pain perception. Pain 151(2):489–495. https://doi.org/10.1016/j.pain.2010.08.009. (PMID: 10.1016/j.pain.2010.08.00920822850)
Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009. (PMID: 10.1016/j.jneumeth.2003.10.009)
Dowman R (1994a) SEP topographies elicited by innocuous and noxious sural nerve stimulation. I. Identification of stable periods and individual differences. Electroencephalogr Clin Neurophysiol Evoked Potentials Sect 92(4):291–302. https://doi.org/10.1016/0168-5597(94)90097-3. (PMID: 10.1016/0168-5597(94)90097-3)
Dowman R (1994b) SEP topographies elicited by innocuous and noxious sural nerve stimulation. II. Effects of stimulus intensity on topographic pattern and amplitude. Electroencephalogr Clin Neurophysiol 92(4):303–315. https://doi.org/10.1016/0168-5597(94)90098-1. (PMID: 10.1016/0168-5597(94)90098-17517852)
Dowman R (2004) Topographic analysis of painful laser and sural nerve electrical evoked potentials. Brain Topogr 16(3):169–179. https://doi.org/10.1023/b:brat.0000019185.30489.ad. (PMID: 10.1023/b:brat.0000019185.30489.ad15162914)
Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32(1):209–224. https://doi.org/10.1146/annurev.neuro.051508.135603. (PMID: 10.1146/annurev.neuro.051508.13560319400723)
Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88(1):220–235. https://doi.org/10.1016/j.neuron.2015.09.034. (PMID: 10.1016/j.neuron.2015.09.03446051344605134)
Garcia-Larrea L (2006) Chapter 30 Evoked potentials in the assessment of pain. In: Cervero F, Jensen TS (eds) Handb clin neurol, vol 81. Elsevier, p 439-XI.
Girard S, Pelland M, Lepore F, Collignon O (2013) Impact of the spatial congruence of redundant targets on within-modal and cross-modal integration. Exp Brain Res 224(2):275–285. https://doi.org/10.1007/s00221-012-3308-0. (PMID: 10.1007/s00221-012-3308-023183636)
Gross J, Schnitzler A, Timmermann L, Ploner M (2007) Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol 5(5):e133. https://doi.org/10.1371/journal.pbio.0050133. (PMID: 10.1371/journal.pbio.0050133174560081854914)
Harris JA, Arabzadeh E, Fairhall AL, Benito C, Diamond ME (2006) Factors affecting frequency discrimination of vibrotactile stimuli: implications for cortical encoding. PLoS ONE 1:e100. https://doi.org/10.1371/journal.pone.0000100. (PMID: 10.1371/journal.pone.0000100171836331762303)
Hauck M, Domnick C, Lorenz J, Gerloff C, Engel AK (2015) Top-down and bottom-up modulation of pain-induced oscillations. Front Hum Neurosci 9:375. https://doi.org/10.3389/fnhum.2015.00375. (PMID: 10.3389/fnhum.2015.00375261909914488623)
Heid C, Mouraux A, Treede RD, Schuh-Hofer S, Rupp A, Baumgärtner U (2020) Early gamma-oscillations as correlate of localized nociceptive processing in primary sensorimotor cortex. J Neurophysiol 123(5):1711–1726. https://doi.org/10.1152/jn.00444.2019. (PMID: 10.1152/jn.00444.201932208893)
Hoechstetter K, Rupp A, Stančák A, Meinck H-M, Stippich C, Berg P, Scherg M (2001) Interaction of tactile input in the human primary and secondary somatosensory cortex—a magnetoencephalographic study. Neuroimage 14(3):759–767. https://doi.org/10.1006/nimg.2001.0855. (PMID: 10.1006/nimg.2001.085511506548)
Iannetti GD, Hughes NP, Lee MC, Mouraux A (2008) Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol 100(2):815–828. https://doi.org/10.1152/jn.00097.2008. (PMID: 10.1152/jn.00097.2008185250212525705)
Kakigi R, Jones SJ (1986) Influence of concurrent tactile stimulation on somatosensory evoked potentials following posterior tibial nerve stimulation in man. Electroencephalogr Clin Neurophysiol 65(2):118–129. https://doi.org/10.1016/0168-5597(86)90044-4. (PMID: 10.1016/0168-5597(86)90044-42419100)
Kennett S, Taylor-Clarke M, Haggard P (2001) Noninformative vision improves the spatial resolution of touch in humans. Curr Biol 11(15):1188–1191. https://doi.org/10.1016/s0960-9822(01)00327-x. (PMID: 10.1016/s0960-9822(01)00327-x11516950)
Kuroki S, Watanabe J, Nishida S (2017) Integration of vibrotactile frequency information beyond the mechanoreceptor channel and somatotopy. Sci Rep 7(1):2758. https://doi.org/10.1038/s41598-017-02922-7. (PMID: 10.1038/s41598-017-02922-7285842825459808)
Lautenbacher S, Prager M, Rollman GB (2007) Pain additivity, diffuse noxious inhibitory controls, and attention: a functional measurement analysis. Somatosens Mot Res 24(4):189–201. https://doi.org/10.1080/08990220701637638. (PMID: 10.1080/0899022070163763818097992)
Le Bars D, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6(3):283–304. (PMID: 10.1016/0304-3959(79)90049-6)
Lee MC, Mouraux A, Iannetti GD (2009) Characterizing the cortical activity through which pain emerges from nociception. J Neurosci 29(24):7909–7916. https://doi.org/10.1523/jneurosci.0014-09.2009. (PMID: 10.1523/jneurosci.0014-09.2009195356026665631)
Legrain V, Iannetti GD, Plaghki L, Mouraux A (2011) The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 93(1):111–124. https://doi.org/10.1016/j.pneurobio.2010.10.005. (PMID: 10.1016/j.pneurobio.2010.10.00521040755)
Liu Z, Zhang N, Chen W, He B (2009) Mapping the bilateral visual integration by EEG and fMRI. Neuroimage 46(4):989–997. https://doi.org/10.1016/j.neuroimage.2009.03.028. (PMID: 10.1016/j.neuroimage.2009.03.02819306933)
Madden VJ, Catley MJ, Grabherr L, Mazzola F, Shohag M, Moseley GL (2016) The effect of repeated laser stimuli to ink-marked skin on skin temperature—recommendations for a safe experimental protocol in humans. PeerJ. https://doi.org/10.7717/peerj.1577. (PMID: 10.7717/peerj.1577267934284715456)
Mejias JF, Murray JD, Kennedy H, Wang X-J (2016) Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Sci Adv 2(11):e1601335. https://doi.org/10.1126/sciadv.1601335. (PMID: 10.1126/sciadv.1601335281385305262462)
Moayedi M, Liang M, Sim AL, Hu L, Haggard P, Iannetti GD (2015) Laser-evoked vertex potentials predict defensive motor actions. Cereb Cortex 25(12):4789–4798. https://doi.org/10.1093/cercor/bhv149. (PMID: 10.1093/cercor/bhv149262507794635919)
Moayedi M, Di Stefano G, Stubbs MT, Djeugam B, Liang M, Iannetti GD (2016) Nociceptive-evoked potentials are sensitive to behaviorally relevant stimulus displacements in egocentric coordinates. eNeuro. https://doi.org/10.1523/eneuro.0151-15.2016. (PMID: 10.1523/eneuro.0151-15.2016274192174939400)
Mouraux A, Iannetti GD (2008) Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging 26(7):1041–1054. https://doi.org/10.1016/j.mri.2008.01.011. (PMID: 10.1016/j.mri.2008.01.01118479877)
Nielsen J, Arendt-Nielsen L (1997) Spatial summation of heat induced pain within and between dermatomes. Somatosens Mot Res 14(2):119–125. https://doi.org/10.1080/08990229771123. (PMID: 10.1080/089902297711239399413)
Northon S, Rustamov N, Piche M (2019) Cortical integration of bilateral nociceptive signals: when more is less. Pain 160(3):724–733. https://doi.org/10.1097/j.pain.0000000000001451. (PMID: 10.1097/j.pain.000000000000145130507784)
Perchet C, Godinho F, Mazza S, Frot M, Legrain V, Magnin M, Garcia-Larrea L (2008) Evoked potentials to nociceptive stimuli delivered by CO 2 or Nd:YAP lasers. Clin Neurophysiol 119(11):2615–2622. https://doi.org/10.1016/j.clinph.2008.06.021. (PMID: 10.1016/j.clinph.2008.06.02118848804)
Plaghki L, Mouraux A (2003) How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Neurophysiol Clin 33(6):269–277. (PMID: 10.1016/j.neucli.2003.10.003)
Ploner M, Sorg C, Gross J (2017) Brain rhythms of pain. Trends Cogn Sci 21(2):100–110. https://doi.org/10.1016/j.tics.2016.12.001. (PMID: 10.1016/j.tics.2016.12.001280250075374269)
Quevedo AS, Coghill RC (2007) Attentional modulation of spatial integration of pain: evidence for dynamic spatial tuning. J Neurosci 27(43):11635–11640. https://doi.org/10.1523/jneurosci.3356-07.2007. (PMID: 10.1523/jneurosci.3356-07.2007179598066673211)
Ragert P, Nierhaus T, Cohen LG, Villringer A (2011) Interhemispheric interactions between the human primary somatosensory cortices. PLoS ONE. https://doi.org/10.1371/journal.pone.0016150. (PMID: 10.1371/journal.pone.0016150213473083037378)
Ronga I, Valentini E, Mouraux A, Iannetti GD (2013) Novelty is not enough: laser-evoked potentials are determined by stimulus saliency, not absolute novelty. J Neurophysiol 109(3):692–701. https://doi.org/10.1152/jn.00464.2012. (PMID: 10.1152/jn.00464.201223136349)
Rossiter HE, Worthen SF, Witton C, Hall SD, Furlong PL (2013) Gamma oscillatory amplitude encodes stimulus intensity in primary somatosensory cortex. Front Hum Neurosci 7:362. https://doi.org/10.3389/fnhum.2013.00362. (PMID: 10.3389/fnhum.2013.00362238742823711008)
Rustamov N, Northon S, Tessier J, Leblond H, Piche M (2019) Integration of bilateral nociceptive inputs tunes spinal and cerebral responses. Sci Rep 9(1):7143. https://doi.org/10.1038/s41598-019-43567-y. (PMID: 10.1038/s41598-019-43567-y310731386509112)
Saija JD, Başkent D, Andringa TC, Akyürek EG (2017) Visual and auditory temporal integration in healthy younger and older adults. Psychol Res. https://doi.org/10.1007/s00426-017-0912-4. (PMID: 10.1007/s00426-017-0912-4288713246557868)
Sambo CF, Forster B, Williams SC, Iannetti GD (2012) To blink or not to blink: fine cognitive tuning of the defensive peripersonal space. J Neurosci 32(37):12921–12927. https://doi.org/10.1523/jneurosci.0607-12.2012. (PMID: 10.1523/jneurosci.0607-12.2012229730166703813)
Sandrini G, Serrao M, Rossi P, Romaniello A, Cruccu G, Willer JC (2005) The lower limb flexion reflex in humans. Prog Neurobiol 77(6):353–395. https://doi.org/10.1016/j.pneurobio.2005.11.003. (PMID: 10.1016/j.pneurobio.2005.11.00316386347)
Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6(4):285–296. https://doi.org/10.1038/nrn1650. (PMID: 10.1038/nrn165015803160)
Schulz E, Tiemann L, Witkovsky V, Schmidt P, Ploner M (2012) gamma Oscillations are involved in the sensorimotor transformation of pain. J Neurophysiol 108(4):1025–1031. https://doi.org/10.1152/jn.00186.2012. (PMID: 10.1152/jn.00186.201222623490)
Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New Haven.
Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40(1–2):28–121. https://doi.org/10.1113/jphysiol.1910.sp001362. (PMID: 10.1113/jphysiol.1910.sp001362169930271533734)
Simões C, Alary F, Forss N, Hari R (2002) Left-hemisphere-dominant SII activation after bilateral median nerve stimulation. Neuroimage 15(3):686–690. https://doi.org/10.1006/nimg.2001.1007. (PMID: 10.1006/nimg.2001.100711848711)
Tabor A, Thacker MA, Moseley GL, Körding KP (2017) Pain: a statistical account. PLoS Comput Biol 13(1):e1005142. https://doi.org/10.1371/journal.pcbi.1005142. (PMID: 10.1371/journal.pcbi.1005142280811345230746)
Tame L, Pavani F, Papadelis C, Farne A, Braun C (2015) Early integration of bilateral touch in the primary somatosensory cortex. Hum Brain Mapp 36(4):1506–1523. https://doi.org/10.1002/hbm.22719. (PMID: 10.1002/hbm.2271925514844)
Tan LL, Oswald MJ, Heinl C, Retana Romero OA, Kaushalya SK, Monyer H, Kuner R (2019) Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nat Commun 10(1):983. https://doi.org/10.1038/s41467-019-08873-z. (PMID: 10.1038/s41467-019-08873-z308161136395755)
Tiemann L, Schulz E, Gross J, Ploner M (2010) Gamma oscillations as a neuronal correlate of the attentional effects of pain. Pain 150(2):302–308. https://doi.org/10.1016/j.pain.2010.05.014. (PMID: 10.1016/j.pain.2010.05.01420558000)
Tiemann L, May ES, Postorino M, Schulz E, Nickel MM, Bingel U, Ploner M (2015) Differential neurophysiological correlates of bottom-up and top-down modulations of pain. Pain 156(2):289–296. https://doi.org/10.1097/01.j.pain.0000460309.94442.44. (PMID: 10.1097/01.j.pain.0000460309.94442.4425599450)
Torta DM, Liang M, Valentini E, Mouraux A, Iannetti GD (2012) Dishabituation of laser-evoked EEG responses: dissecting the effect of certain and uncertain changes in stimulus spatial location. Exp Brain Res 218(3):361–372. https://doi.org/10.1007/s00221-012-3019-6. (PMID: 10.1007/s00221-012-3019-622349498)
Torta DM, Legrain V, Mouraux A (2015) Looking at the hand modulates the brain responses to nociceptive and non-nociceptive somatosensory stimuli but does not necessarily modulate their perception. Psychophysiology 52(8):1010–1018. https://doi.org/10.1111/psyp.12439. (PMID: 10.1111/psyp.12439259172175338730)
Valentini E, Betti V, Hu L, Aglioti SM (2013) Hypnotic modulation of pain perception and of brain activity triggered by nociceptive laser stimuli. Cortex 49(2):446–462. https://doi.org/10.1016/j.cortex.2012.02.005. (PMID: 10.1016/j.cortex.2012.02.00522464451)
Willer JC (1977) Comparative study of perceived pain and nociceptive flexion reflex in man. Pain 3(1):69–80. https://doi.org/10.1016/0304-3959(77)90036-7. (PMID: 10.1016/0304-3959(77)90036-7876668)
Woolf CJ, Ma Q (2007) Nociceptors—noxious stimulus detectors. Neuron 55(3):353–364. https://doi.org/10.1016/j.neuron.2007.07.016. (PMID: 10.1016/j.neuron.2007.07.01617678850)
Yarnitsky D (2010) Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol 23(5):611–615. https://doi.org/10.1097/ACO.0b013e32833c348b. (PMID: 10.1097/ACO.0b013e32833c348b20543676)
Yue L, Iannetti GD, Hu L (2020) The neural origin of nociceptive-induced gamma-band oscillations. J Neurosci 40(17):3478–3490. https://doi.org/10.1523/jneurosci.0255-20.2020. (PMID: 10.1523/jneurosci.0255-20.2020322418367178916)
Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD (2012) Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. J Neurosci 32(22):7429–7438. https://doi.org/10.1523/jneurosci.5877-11.2012. (PMID: 10.1523/jneurosci.5877-11.2012226492236703598)
Grant Information:
06659 Natural Science and Research Council of Canada; 33731 Canadian Foundation for Innovation
Contributed Indexing:
Keywords: Bilateral; Electroencephalography; Integration; Nociception; Pain; Saliency
Entry Date(s):
Date Created: 20210719 Date Completed: 20210921 Latest Revision: 20210921
Update Code:
20240105
DOI:
10.1007/s00221-021-06175-9
PMID:
34279670
Czasopismo naukowe
The cerebral integration of somatosensory inputs from multiple sources is essential to produce adapted behaviors. Previous studies suggest that bilateral somatosensory inputs interact differently depending on stimulus characteristics, including their noxious nature. The aim of this study was to clarify how bilateral inputs evoked by noxious laser stimuli, noxious shocks, and innocuous shocks interact in terms of perception and brain responses. The experiment comprised two conditions (right-hand stimulation and concurrent stimulation of both hands) in which painful laser stimuli, painful shocks and non-painful shocks were delivered. Perception, somatosensory-evoked potentials (P45, N100, P260), laser-evoked potentials (N1, N2 and P2) and event-related spectral perturbations (delta to gamma oscillation power) were compared between conditions and stimulus modalities. The amplitude of negative vertex potentials (N2 or N100) and the power of delta/theta oscillations were increased in the bilateral compared with unilateral condition, regardless of the stimulus type (P < 0.01). However, gamma oscillation power increased for painful and non-painful shocks (P < 0.01), but not for painful laser stimuli (P = 0.08). Despite the similarities in terms of brain activity, bilateral inputs interacted differently for painful stimuli, for which perception remained unchanged, and non-painful stimuli, for which perception increased. This may reflect a ceiling effect for the attentional capture by noxious stimuli and warrants further investigations to examine the regulation of such interactions by bottom-up and top-down processes.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies