Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction.

Tytuł:
Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction.
Autorzy:
Gao Y; School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia.
Cloos M; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
Liu F; School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia.
Crozier S; School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia.
Pike GB; Departments of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada.
Sun H; School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia. Electronic address: .
Źródło:
NeuroImage [Neuroimage] 2021 Oct 15; Vol. 240, pp. 118404. Date of Electronic Publication: 2021 Jul 16.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Orlando, FL : Academic Press, c1992-
MeSH Terms:
Deep Learning*
Neural Networks, Computer*
Brain/*diagnostic imaging
Brain Mapping/*methods
Image Processing, Computer-Assisted/*methods
Magnetic Resonance Imaging/*methods
Brain/physiology ; Brain Mapping/trends ; Humans ; Image Processing, Computer-Assisted/trends ; Magnetic Resonance Imaging/trends
Grant Information:
FDN-143290 Canada CIHR
Contributed Indexing:
Keywords: Compressed sensing; Deep complex residual network (DCRNet); MRI phase acceleration; QSM acceleration; Quantitative susceptibility mapping (QSM)
Entry Date(s):
Date Created: 20210719 Date Completed: 20211021 Latest Revision: 20211021
Update Code:
20240105
DOI:
10.1016/j.neuroimage.2021.118404
PMID:
34280526
Czasopismo naukowe
Quantitative susceptibility mapping (QSM) and R2* mapping are MRI post-processing methods that quantify tissue magnetic susceptibility and transverse relaxation rate distributions. However, QSM and R2* acquisitions are relatively slow, even with parallel imaging. Incoherent undersampling and compressed sensing reconstruction techniques have been used to accelerate traditional magnitude-based MRI acquisitions; however, most do not recover the full phase signal, as required by QSM, due to its non-convex nature. In this study, a learning-based Deep Complex Residual Network (DCRNet) is proposed to recover both the magnitude and phase images from incoherently undersampled data, enabling high acceleration of QSM and R2* acquisition. Magnitude, phase, R2*, and QSM results from DCRNet were compared with two iterative and one deep learning methods on retrospectively undersampled acquisitions from six healthy volunteers, one intracranial hemorrhage and one multiple sclerosis patients, as well as one prospectively undersampled healthy subject using a 7T scanner. Peak signal to noise ratio (PSNR), structural similarity (SSIM), root-mean-squared error (RMSE), and region-of-interest susceptibility and R2* measurements are reported for numerical comparisons. The proposed DCRNet method substantially reduced artifacts and blurring compared to the other methods and resulted in the highest PSNR, SSIM, and RMSE on the magnitude, R2*, local field, and susceptibility maps. Compared to two iterative and one deep learning methods, the DCRNet method demonstrated a 3.2% to 9.1% accuracy improvement in deep grey matter susceptibility when accelerated by a factor of four. The DCRNet also dramatically shortened the reconstruction time of single 2D brain images from 36-140 seconds using conventional approaches to only 15-70 milliseconds.
(Copyright © 2021. Published by Elsevier Inc.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies