Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Understanding the emergence of contingent and deterministic exclusion in multispecies communities.

Tytuł:
Understanding the emergence of contingent and deterministic exclusion in multispecies communities.
Autorzy:
Song C; Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.; Department of Biology, McGill University, Montreal, Canada.; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
Uricchio LH; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
Mordecai EA; Biology Department, Stanford University, Stanford, CA, USA.
Saavedra S; Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
Źródło:
Ecology letters [Ecol Lett] 2021 Oct; Vol. 24 (10), pp. 2155-2168. Date of Electronic Publication: 2021 Jul 19.
Typ publikacji:
Letter
Język:
English
Imprint Name(s):
Publication: Oxford, UK : Blackwell Publishing
Original Publication: Oxford, UK : [Paris, France] : Blackwell Science ; Centre national de la recherche scientifique, c1998-
MeSH Terms:
Plants*
References:
Oecologia. 1999 Dec;121(4):518-526. (PMID: 28308361)
PLoS Comput Biol. 2020 Apr 23;16(4):e1007787. (PMID: 32324730)
Nature. 2009 Apr 23;458(7241):1018-20. (PMID: 19396144)
Ecol Lett. 2007 Feb;10(2):95-104. (PMID: 17257097)
Science. 2018 May 25;360(6391):. (PMID: 29798854)
Am Nat. 2003 Feb;161(2):350-4. (PMID: 12675378)
Ecology. 2019 Jun;100(6):e02708. (PMID: 30924140)
Nature. 2009 Sep 10;461(7261):254-7. (PMID: 19675568)
Nature. 2000 Feb 24;403(6772):853-8. (PMID: 10706275)
Trends Ecol Evol. 2020 May;35(5):384-396. (PMID: 32007296)
Science. 2019 Oct 18;366(6463):339-345. (PMID: 31624208)
Ecol Lett. 2017 Jul;20(7):791-800. (PMID: 28547799)
Ecol Lett. 2019 Nov;22(11):1923-1939. (PMID: 31523913)
Ecol Lett. 2010 Sep;13(9):1085-93. (PMID: 20576030)
Evolution. 2017 Jun;71(6):1719-1727. (PMID: 28444894)
Ecology. 2014 Mar;95(3):726-36. (PMID: 24804456)
Am Nat. 2013 Jun;181(6):737-47. (PMID: 23669537)
Nat Ecol Evol. 2020 Aug;4(8):1036-1043. (PMID: 32572220)
Ecology. 2015 Oct;96(10):2643-52. (PMID: 26649386)
Nature. 1969 Dec 13;224(5224):1076-9. (PMID: 5353714)
Nature. 1972 Aug 18;238(5364):413-4. (PMID: 4559589)
Science. 2018 May 25;360(6391):. (PMID: 29798852)
Nat Ecol Evol. 2017 Dec;1(12):1870-1875. (PMID: 29062124)
Nature. 2001 Jul 5;412(6842):72-6. (PMID: 11452308)
Am Nat. 2019 Nov;194(5):640-653. (PMID: 31613666)
Ecol Lett. 2011 Aug;14(8):782-7. (PMID: 21672121)
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5638-42. (PMID: 21415368)
J R Soc Interface. 2020 Nov;17(172):20200607. (PMID: 33202176)
Science. 2017 Jun 30;356(6345):1389-1392. (PMID: 28663501)
Ecol Appl. 2016 Sep;26(6):1624-1632. (PMID: 27755706)
Ecol Lett. 2014 Jul;17(7):836-44. (PMID: 24766326)
Nat Ecol Evol. 2017 Mar 27;1(5):109. (PMID: 28812687)
Ecology. 2018 Mar;99(3):743-751. (PMID: 29285752)
Nature. 2017 May 31;546(7656):56-64. (PMID: 28569813)
Nat Commun. 2017 Feb 24;8:. (PMID: 28233768)
Nature. 2008 Nov 13;456(7219):235-8. (PMID: 19005554)
Phys Rev E. 2018 Jan;97(1-1):012401. (PMID: 29448431)
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6205-6210. (PMID: 30850518)
Ecol Lett. 2014 Dec;17(12):1479-94. (PMID: 25252135)
Ecol Lett. 2010 Aug 1;13(8):1019-29. (PMID: 20545729)
Science. 2010 Aug 13;329(5993):853-6. (PMID: 20705861)
Nature. 2000 May 11;405(6783):228-33. (PMID: 10821283)
Curr Biol. 2020 Feb 24;30(4):R180-R189. (PMID: 32097648)
Am Nat. 2019 Nov;194(5):627-639. (PMID: 31613676)
Ecol Lett. 2013 Nov;16(11):1373-81. (PMID: 24112458)
Ecol Lett. 2018 Aug;21(8):1221-1228. (PMID: 29845712)
Nature. 1972 Apr 7;236(5345):273-4 passim. (PMID: 4552159)
Nature. 2012 Feb 19;483(7388):205-8. (PMID: 22343894)
Nat Ecol Evol. 2018 Nov;2(11):1691-1695. (PMID: 30297744)
Science. 2007 Jul 6;317(5834):58-62. (PMID: 17615333)
Ecol Lett. 2020 Oct;23(10):1511-1521. (PMID: 32776667)
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13384-9. (PMID: 14595028)
Am Nat. 2018 Feb;191(2):197-209. (PMID: 29351017)
Ecol Lett. 2015 Aug;18(8):790-798. (PMID: 26032242)
J Theor Biol. 2018 Aug 7;450:30-36. (PMID: 29702110)
Am Nat. 2019 Feb;193(2):213-226. (PMID: 30720356)
Ecol Lett. 2019 Nov;22(11):1957-1975. (PMID: 31328414)
Ecol Lett. 2018 Sep;21(9):1319-1329. (PMID: 29938882)
Science. 2014 Jul 25;345(6195):1253497. (PMID: 25061214)
Theor Popul Biol. 2006 Feb;69(1):68-87. (PMID: 16243372)
Science. 2018 Aug 3;361(6401):469-474. (PMID: 30072533)
Science. 1960 Apr 29;131(3409):1292-7. (PMID: 14399717)
Phys Rev E. 2021 May;103(5-1):052403. (PMID: 34134331)
Grant Information:
R35GM133439 United States NH NIH HHS; DEB-1518681 NSF; DEB-2011147 NSF; DEB-2024349 NSF; R35 GM133439 United States GM NIGMS NIH HHS
Contributed Indexing:
Keywords: competitive exclusion; contingent exclusion; deterministic exclusion; ecological communities; structural stability
Entry Date(s):
Date Created: 20210721 Date Completed: 20210910 Latest Revision: 20220716
Update Code:
20240105
PubMed Central ID:
PMC9255563
DOI:
10.1111/ele.13846
PMID:
34288350
Opinia redakcyjna
Competitive exclusion can be classified as deterministic or as historically contingent. While competitive exclusion is common in nature, it has remained unclear when multispecies communities formed by more than two species should be dominated by deterministic or contingent exclusion. Here, we take a fully parameterised model of an empirical competitive system between invasive annual and native perennial plant species to explain both the emergence and sources of competitive exclusion in multispecies communities. Using a structural approach to understand the range of parameters promoting deterministic and contingent exclusions, we then find heuristic theoretical support for the following three general conclusions. First, we find that the life-history of perennial species increases the probability of observing contingent exclusion by increasing their effective intrinsic growth rates. Second, we find that the probability of observing contingent exclusion increases with weaker intraspecific competition, and not with the level of hierarchical competition. Third, we find a shift from contingent exclusion to deterministic exclusion with increasing numbers of competing species. Our work provides a heuristic framework to increase our understanding about the predictability of species persistence within multispecies communities.
(© 2021 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies