Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Molecular characterization of a catalase gene from the green peach aphid (Myzus persicae).

Tytuł:
Molecular characterization of a catalase gene from the green peach aphid (Myzus persicae).
Autorzy:
Li MY; Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China.
Wang Y; Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China.
Lei X; Department of Tobacco Production and Management, Luzhou Branch of Sichuan Tobacco Corporation, Luzhou, China.
Xu CT; Department of Tobacco Production and Management, Luzhou Branch of Sichuan Tobacco Corporation, Luzhou, China.
Wang DD; Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China.
Liu S; Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China.
Li SG; Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China.
Źródło:
Archives of insect biochemistry and physiology [Arch Insect Biochem Physiol] 2021 Oct; Vol. 108 (2), pp. e21835. Date of Electronic Publication: 2021 Jul 26.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York, NY : Wiley
Original Publication: New York : Alan R. Liss, c1983-
MeSH Terms:
Aphids*/genetics
Aphids*/metabolism
Catalase*/genetics
Catalase*/metabolism
Animals ; Antioxidants/metabolism ; Gene Expression Profiling ; Genes, Insect ; Insect Proteins/genetics ; Insect Proteins/metabolism ; Phylogeny ; RNA Interference
References:
Abbott, W. S. (1987). A method of computing the effectiveness of an insecticide. 1925. Journal of the American Mosquito Control Association, 3, 302-303.
Abdellatef, E., Will, T., Koch, A., Imani, J., Vilcinskas, A., & Kogel, K.-H. (2015). Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae. Plant Biotechnology Journal, 13, 849-857.
Alam, N. B., & Ghosh, A. (2018). Comprehensive analysis and transcript profiling of Arabidopsis thaliana and Oryza sativa catalase gene family suggests their specific roles in development and stress responses. Plant Physiology and Biochemistry, 123, 54-64.
Al-Ayedh, H., Rizwan-ul-Haq, M., Hussain, A., & Aljabr, A. M. (2016). Insecticidal potency of RNAi-based catalase knockdown in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Pest Management Science, 72, 2118-2127.
Ali, A., Rashid, M. A., Huang, Q. Y., Wong, C., & Lei, C. L. (2017). Response of antioxidant enzymes in Mythimna separata (Lepidoptera: Noctuidae) exposed to thermal stress. Bulletin of Entomological Research, 107, 382-390.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402.
Bass, C., Puinean, A. M., Zimmer, C. T., Denholm, I., Field, L. M., Foster, S. P., & Williamson, M. S. (2014). The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology, 51, 41-51.
Bautista, M. A. M., Miyata, T., Miura, K., & Tanaka, T. (2009). RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology, 39, 38-46.
Blajszczak, C., & Bonini, M. G. (2017). Mitochondria targeting by environmental stressors: Implications for redox cellular signaling. Toxicology, 391, 84-89.
Braendle, C., Davis, G. K., Brisson, J. A., & Stern, D. L. (2006). Wing dimorphism in aphids. Heredity, 97, 192-199.
Cao, Y., Yang, Q., Tu, X.-H., Li, S.-G., & Liu, S. (2018). Molecular characterization of a typical 2-Cys thioredoxin peroxidase from the Asiatic rice borer Chilo suppressalis and its role in oxidative stress. Archives of Insect Biochemistry and Physiology, 99, e21476.
Cheng, J., Wang, C.-Y., Lyu, Z.-H., Chen, J.-X., & Lin, T. (2018). Identification and characterization of the catalase gene involved in resistance to thermal stress in Heortia vitessoides using RNA interference. Journal of Thermal Biology, 78, 114-121.
Chikate, Y. R., Dawkar, V. V., Barbole, R. S., Tilak, P. V., Gupta, V. S., & Giri, A. P. (2016). RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera. Pesticide Biochemistry and Physiology, 133, 44-51.
Corona, M., & Robinson, G. E. (2006). Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Molecular Biology, 15, 687-701.
DeJong, R. J., Miller, L. M., Molina-Cruz, A., Gupta, L., Kumar, S., & Barillas-Mury, C. (2007). Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America, 104, 2121-2126.
Deng, F., & Zhao, Z. (2014). Influence of catalase gene silencing on the survivability of Sitobion avenae. Archives of Insect Biochemistry and Physiology, 86, 46-57.
Diaz-Albiter, H., Mitford, R., Genta, F. A., Sant'Anna, M. R. V., & Dillon, R. J. (2011). Reactive oxygen species scavenging by catalase is important for female Lutzomyia longipalpis fecundity and mortality. PLOS One, 6, e17486.
Ding, J.-N., Zhang, H.-H., & Chi, D.-F. (2015). Effects of a pathogenic Beauveria bassiana (Hypocreales: Cordycipitaceae) strain on detoxifying and protective enzyme activities in Xylotrechus rusticus (Coleoptera: Cerambycidae) larvae. Florida Entomologist, 98, 1148-1156.
von Dohlen, C. D., & Moran, N. A. (2008). Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation. Biological Journal of the Linnean Society, 71, 689-717.
Dowling, D. K., & Simmons, L. W. (2009). Reactive oxygen species as universal constraints in life-history evolution. Proceedings of the Royal Society B: Biological Sciences, 276, 1737-1745.
Díaz, A., Loewen, P. C., Fita, I., & Carpena, X. (2012). Thirty years of heme catalases structural biology. Archives of Biochemistry and Biophysics, 525, 102-110.
van Emden, H. F., Eastop, V. F., Hughes, A. L., & Way, M. J. (1969). The ecology of Myzus persicae. Annual Review of Entomology, 14, 197-270.
Felton, G. W., & Summers, C. B. (1995). Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29, 187-197.
Froissart, R., Doumayrou, J., Vuillaume, F., Alizon, S., & Michalakis, Y. (2010). The virulence-transmission trade-off in vector-borne plant viruses: A review of (non-)existing studies. Philosophical Transactions of the Royal Society, B: Biological Sciences, 365, 1907-1918.
Ghanim, M., Dombrovsky, A., Raccah, B., & Sherman, A. (2006). A microarray approach identifies ANT, OS-D and takeout-like genes as differentially regulated in alate and apterous morphs of the green peach aphid Myzus persicae (Sulzer). Insect Biochemistry and Molecular Biology, 36, 857-868.
Griswold, C. M., Matthews, A. L., Bewley, K. E., & Mahaffey, J. W. (1993). Molecular characterization and rescue of acatalasemic mutants of Drosophila melanogaster. Genetics, 134, 781-788.
Heck, D. E., Shakarjian, M., Kim, H. D., Laskin, J. D., & Vetrano, A. M. (2010). Mechanisms of oxidant generation by catalase. Annals of the New York Academy of Sciences, 1203, 120-125.
Kim, B. Y., Kim, H. J., Lee, K. S., Seo, S. J., & Jin, B. R. (2008). Catalase from the white-spotted flower chafer, Protaetia brevitarsis: cDNA sequence, expression, and functional characterization. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 149, 183-190.
Kola, V. S. R., Renuka, P., Madhav, M. S., & Mangrauthia, S. K. (2015). Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Frontiers in Physiology, 6, 119. https://doi.org/10.3389/fphys.2015.00119.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
Li, S.-G., Zhou, B.-G., Li, M.-Y., Liu, S., Hua, R.-M., & Lin, H.-F. (2017). Chemical composition of Illicium verum fruit extract and its bioactivity against the peach-potato aphid, Myzus persicae (Sulzer). Arthropod-Plant Interactions, 11, 203-212.
Li, W., Lu, Z., Li, L., Yu, Y., Dong, S., Men, X., & Ye, B. (2018). Sublethal effects of imidacloprid on the performance of the bird cherry-oat aphid Rhopalosiphum padi. PLOS One, 13, e0204097.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402-408.
Lu, Y., Bai, Q., Zheng, X., & Lu, Z. (2017). Expression and enzyme activity of catalase in Chilo suppressalis (Lepidoptera: Crambidae) is responsive to environmental stresses. Journal of Economic Entomology, 110, 1803-1812.
Ma, M., Jia, H., Cui, X., Zhai, N., Wang, H., Guo, X., & Xu, B. (2018). Isolation of carboxylesterase (esterase FE4) from Apis cerana cerana and its role in oxidative resistance during adverse environmental stress. Biochimie, 144, 85-97.
Matsumura, T., Matsumoto, H., & Hayakawa, Y. (2017). Heat stress hardening of oriental armyworms is induced by a transient elevation of reactive oxygen species during sublethal stress. Archives of Insect Biochemistry and Physiology, 96, e21421.
Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417, 1-13.
Orr, W. C., & Sohal, R. S. (1992). The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Archives of Biochemistry and Biophysics, 297, 35-41.
Ortiz-Rivas, B., & Martínez-Torres, D. (2010). Combination of molecular data support the existence of three main lineages in the phylogeny of aphids (Hemiptera: Aphididae) and the basal position of the subfamily Lachninae. Molecular Phylogenetics and Evolution, 55, 305-317.
Palli, S. R. (2020). CncC/Maf-mediated xenobiotic response pathway in insects. Archives of Insect Biochemistry and Physiology, 104, e21674.
Pan, Y., Zeng, X., Wen, S., Liu, X., & Shang, Q. (2020). Characterization of the cap ‘n’ collar isoform c gene in Spodoptera frugiperda and its association with superoxide dismutase. Insects, 11, 221.
Pitino, M., Coleman, A. D., Maffei, M. E., Ridout, C. J., & Hogenhout, S. A. (2011). Silencing of aphid genes by dsRNA feeding from plants. PLOS One, 6, e25709.
Qin, J., Lu, M.-X., Zheng, Y.-T., & Du, Y.-Z. (2017). Molecular cloning, characterization, and functional analysis of catalase in Frankliniella occidentalis (Thysanoptera: Thripidae). Annals of the Entomological Society of America, 110, 212-220.
Radyuk, S. N., Klichko, V. I., & Orr, W. C. (2000). Catalase expression in Drosophila melanogaster is responsive to ecdysone and exhibits both transcriptional and post-transcriptional regulation. Archives of Insect Biochemistry and Physiology, 45, 79-93.
Ray, P. D., Huang, B.-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24, 981-990.
Shang, F., Ding, B.-Y., Xiong, Y., Dou, W., Wei, D., Jiang, H.-B., & Wang, J.-J. (2016). Differential expression of genes in the alate and apterous morphs of the brown citrus aphid, Toxoptera citricida. Scientific Reports, 6, 32099.
Sim, C., & Denlinger, D. L. (2011). Catalase and superoxide dismutase-2 enhance survival and protect ovaries during overwintering diapause in the mosquito Culex pipiens. Journal of Insect Physiology, 57, 628-634.
Song, L., Gao, Y., Li, J., & Ban, L. (2018). iTRAQ-based comparative proteomic analysis reveals molecular mechanisms underlying wing dimorphism of the pea aphid, Acyrthosiphon pisum. Frontiers in Physiology, 9, 1016.
Tang, Q.-L., Ma, K.-S., Hou, Y.-M., & Gao, X.-W. (2017). Monitoring insecticide resistance and diagnostics of resistance mechanisms in the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) in China. Pesticide Biochemistry and Physiology, 143, 39-47.
Tang, Q.-Y., & Zhang, C.-X. (2013). Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science, 20, 254-260.
Terhzaz, S., Cabrero, P., Brinzer, R. A., Halberg, K. A., Dow, J. A. T., & Davies, S.-A. (2015). A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance. Insect Biochemistry and Molecular Biology, 67, 38-46.
Wang, Y., Wang, L., Zhu, Z., Ma, W., & Lei, C. (2012). The molecular characterization of antioxidant enzyme genes in Helicoverpa armigera adults and their involvement in response to ultraviolet-A stress. Journal of Insect Physiology, 58, 1250-1258.
Wang, Y., Zhou, T., Lin, H., Jin, P., Li, M., & Chen, D. (2016). Time-dose-mortality of the Beauveria bassiana strain Bb84 on Q-biotype Bemisia tabaci. Chinese. Journal of Pesticide Science, 18, 459-464.
Xu, J., Lu, M.-X., Huang, D.-L., & Du, Y.-Z. (2017). Molecular cloning, characterization, genomic structure and functional analysis of catalase in Chilo suppressalis. Journal of Asia-Pacific Entomology, 20, 331-336.
Yamamoto, K., Banno, Y., Fujii, H., Miake, F., Kashige, N., & Aso, Y. (2005). Catalase from the silkworm, Bombyx mori: Gene sequence, distribution, and overexpression. Insect Biochemistry and Molecular Biology, 35, 277-283.
Yan, S., Qian, J., Cai, C., Ma, Z., Li, J., Yin, M., & Shen, J. (2020). Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. Journal of Pest Science, 93, 449-459.
Zhang, X., Li, Y., Wang, J., Zhang, T., Li, T., Dong, W., & Zhang, J. (2016). Identification and characteristic analysis of the catalase gene from Locusta migratoria. Pesticide Biochemistry and Physiology, 132, 125-131.
Zhao, H., Yi, X., Hu, Z., Hu, M., Chen, S., Muhammad, R.-u.-H., & Gong, L. (2013). RNAi-mediated knockdown of catalase causes cell cycle arrest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius). PLOS One, 8, e59527.
Zheng, Y., Hu, Y., Yan, S., Zhou, H., Song, D., Yin, M., & Shen, J. (2019). A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Pest Management Science, 75, 1993-1999.
Zhou, B.-G., Wang, S., Dou, T.-T., Liu, S., Li, M.-Y., Hua, R.-M., & Lin, H.-F. (2016). Aphicidal activity of Illicium verum fruit extracts and their effects on the acetylcholinesterase and glutathione S-transferases activities in Myzus persicae (Hemiptera: Aphididae). Journal of Insect Science, 16, 11.
Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94, 909-950.
Grant Information:
1908085MC70 Anhui Provincial Natural Science Foundation; 1908085MC94 Anhui Provincial Natural Science Foundation; XJDC2020445 Undergraduate Innovation Training Program of Anhui Agricultural University; SCYC202112 Key Project of China National Tobacco Corporation Sichuan Company
Contributed Indexing:
Keywords: RNA interference; antioxidant enzyme; catalase; green peach aphid; stress defense
Substance Nomenclature:
0 (Antioxidants)
0 (Insect Proteins)
EC 1.11.1.6 (Catalase)
Entry Date(s):
Date Created: 20210726 Date Completed: 20210927 Latest Revision: 20210927
Update Code:
20240105
DOI:
10.1002/arch.21835
PMID:
34309077
Czasopismo naukowe
The green peach aphid, Myzus persicae (Sulzer), is a serious agricultural pest with a worldwide distribution. Catalase (CAT), which is encoded by the catalase (Cat) gene, is an extremely important antioxidant enzyme that plays a pivotal role in protecting cells against the toxic effects of hydrogen peroxide. The Cat gene has not been characterized in M. persicae; therefore, this study describes the identification of the Cat (MpCat) gene from M. persicae. MpCat contains an open reading frame of 1515 bp and encodes a MpCAT protein consisting of 504 amino-acid residues. MpCAT possesses features typical of other insect catalases, including 7 conserved amino acids involved in binding heme and 15 involved in binding nicotinamide adenine dinucleotide phosphate. Phylogenetic analysis showed that MpCAT was closely related to orthologs from other aphid species. MpCat consisted of nine exons and eight introns, and the number and insertion sites of introns are consistent with those of Cat genes from Acyrthosiphon pisum (Harris) and Aphis gossypii Glover. The mRNA transcripts of MpCat were detected at all tested developmental stages, with the highest mRNA level in alate adults. The expression of MpCat was significantly upregulated when M. persicae was exposed to low and high temperatures, ultraviolet radiation, Beauveria bassiana, and permethrin. The transcription of MpCat and the activity of catalase were suppressed by RNA interference, and knockdown of MpCat significantly reduced the survival rate in M. persicae under heat stress. The results provide valuable information for further study on the physiological functions of MpCat.
(© 2021 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies