Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Critical transitions and ecological resilience of large marine ecosystems in the Northwestern Pacific in response to global warming.

Tytuł:
Critical transitions and ecological resilience of large marine ecosystems in the Northwestern Pacific in response to global warming.
Autorzy:
Ma S; Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Liu D; Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Tian Y; Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
Fu C; Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada.
Li J; Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Ju P; Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Sun P; Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Ye Z; Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Liu Y; Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
Watanabe Y; Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.; Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan.
Źródło:
Global change biology [Glob Chang Biol] 2021 Oct; Vol. 27 (20), pp. 5310-5328. Date of Electronic Publication: 2021 Aug 08.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
MeSH Terms:
Ecosystem*
Global Warming*
Biodiversity ; Fisheries ; Temperature
References:
Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H., Fortelius, M., Getz, W. M., Harte, J., Hastings, A., Marquet, P. A., Martinez, N. D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J. W., Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., … Smith, A. B. (2012). Approaching a state shift in Earth’s biosphere. Nature, 486, 52-58. https://doi.org/10.1038/nature11018.
Belkin, I. M. (2009). Rapid warming of large marine ecosystems. Progress in Oceanography, 81, 207-213. https://doi.org/10.1016/j.pocean.2009.04.011.
Burthe, S. J., Henrys, P. A., Mackay, E. B., Spears, B. M., Campbell, R., Carvalho, L., Dudley, B., Gunn, I. D. M., Johns, D. G., Maberly, S. C., May, L., Newell, M. A., Wanless, S., Winfield, I. J., Thackeray, S. J., & Daunt, F. (2016). Do early warning indicators consistently predict nonlinear change in long-term ecological data? Journal of Applied Ecology, 53, 666-676. https://doi.org/10.1111/1365-2664.12519.
Cai, R., Tan, H., & Qi, Q. (2016). Impacts of and adaptation to inter-decadal marine climate change in coastal China seas. International Journal of Climatology, 36, 3770-3780. https://doi.org/10.1002/joc.4591.
Carpenter, S. R., Cole, J. J., Pace, M. L., Batt, R., Brock, W. A., Cline, T., Coloso, J., Hodgson, J. R., Kitchell, J. F., Seekell, D. A., Smith, L., & Weidel, B. (2011). Early warnings of regime shifts: A whole-ecosystem experiment. Science, 332, 1079-1082. https://doi.org/10.1126/science.1203672.
Casini, M., Hjelm, J., Molinero, J. C., Lovgren, J., Cardinale, M., Bartolino, V., Belgrano, A., & Kornilovs, G. (2009). Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 197-202. https://doi.org/10.1073/pnas.0806649105.
Casini, M., Lovgren, J., Hjelm, J., Cardinale, M., Molinero, J. C., & Kornilovs, G. (2008). Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proceedings of the Royal Society B: Biological Sciences, 275, 1793-1801. https://doi.org/10.1098/rspb.2007.1752.
Cheung, W. W. L., Brodeur, R. D., Okey, T. A., & Pauly, D. (2015). Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Progress in Oceanography, 130, 19-31. https://doi.org/10.1016/j.pocean.2014.09.003.
Cheung, W. W. L., Watson, R., & Pauly, D. (2013). Signature of ocean warming in global fisheries catch. Nature, 497, 365-368. https://doi.org/10.1038/nature12156.
Ciannelli, L., Chan, K. S., Bailey, K. M., & Stenseth, N. C. (2004). Nonadditive effects of the environment on the survival of a large marine fish population. Ecology, 85, 3418-3427. https://doi.org/10.1890/03-0755.
Coll, M., Libralato, S., Tudela, S., Palomera, I., & Pranovi, F. (2008). Ecosystem overfishing in the ocean. PLoS One, 3, 1-10. https://doi.org/10.1371/journal.pone.0003881.
Dai, L., Korolev, K. S., & Gore, J. (2013). Slower recovery in space before collapse of connected populations. Nature, 496, 355-358. https://doi.org/10.1038/nature12071.
Dakos, V., Carpenter, S. R., van Nes, E. H., & Scheffer, M. (2015). Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20130263. https://doi.org/10.1098/rstb.2013.0263.
Dakos, V., Scheffer, M., Van Nes, E. H., Brovkin, V., Petoukhov, V., & Held, H. (2008). Slowing down as an early warning signal for abrupt climate change. Proceedings of the National Academy of Sciences of the United States of America, 105, 14308-14312. https://doi.org/10.1073/pnas.0802430105.
Dudgeon, S. R., Aronson, R. B., Bruno, J. F., & Precht, W. F. (2010). Phase shifts and stable states on coral reefs. Marine Ecology Progress Series, 413, 201-216. https://doi.org/10.3354/meps08751.
Fanning, L., Mahon, R., McConney, P., Angulo, J., Burrows, F., Chakalall, B., Gil, D., Haughton, M., Heileman, S., Martínez, S., Ostine, L., Oviedo, A., Parsons, S., Phillips, T., Santizo Arroya, C., Simmons, B., & Toro, C. (2007). A large marine ecosystem governance framework. Marine Policy, 31, 434-443. https://doi.org/10.1016/j.marpol.2007.01.003.
FAO. (2020). FAO yearbook. Fishery and aquaculture statistics 2018. https://doi.org/10.4060/cb1213t.
Froese, R., & Pauly, D. (Eds.). (2021). FishBase. www.fishbase.org, version (02/2021).
Gong, D. Y., Wang, S. W., & Zhu, J. H. (2001). East Asian winter monsoon and Arctic oscillation. Geophysical Research Letters, 28, 2073-2076. https://doi.org/10.1029/2000GL012311.
Hare, S. R., & Mantua, N. J. (2000). Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography, 47, 103-145. https://doi.org/10.1016/S0079-6611(00)00033-1.
Hirota, M., Holmgren, M., Van Nes, E. H., & Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334, 232-235. https://doi.org/10.1126/science.1210657.
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology Evolution and Systematics, 4, 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245.
Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B. O., Gordon, A. L., Lin, X., Chen, Z., Hu, S., Wang, G., Wang, Q., Sprintall, J., Qu, T., Kashino, Y., Wang, F., & Kessler, W. S. (2015). Pacific western boundary currents and their roles in climate. Nature, 522, 299-308. https://doi.org/10.1038/nature14504.
Jung, H. K., Rahman, S. M., Kang, C., Park, S., Lee, S. H., Park, H. J., Kim, H., & Lee, C. I. (2017). The influence of climate regime shifts on the marine environment and ecosystems in the East Asian Marginal Seas and their mechanisms. Deep Sea Research Part II: Topical Studies in Oceanography, 143, 110-120. https://doi.org/10.1016/j.dsr2.2017.06.010.
Kim, S. T. (2012). A review of the Sea of Okhotsk ecosystem response to the climate with special emphasis on fish populations. ICES Journal of Marine Science, 69, 1123-1133. https://doi.org/10.1093/icesjms/fss107.
Kuroda, H., Saito, T., Kaga, T., Takasuka, A., Kamimura, Y., Furuichi, S., & Nakanowatari, T. (2020). Unconventional sea surface temperature regime around Japan in the 2000s-2010s: Potential influences on major fisheries resources. Frontiers in Marine Science, 7, 574904. https://doi.org/10.3389/fmars.2020.574904.
Litzow, M. A., Ciannelli, L., Puerta, P., Wettstein, J. J., Rykaczewski, R. R., & Opiekun, M. (2018). Non-stationary climate-salmon relationships in the Gulf of Alaska. Proceedings of the Royal Society B: Biological Sciences, 285, 20181855. https://doi.org/10.1098/rspb.2018.1855.
Litzow, M. A., Ciannelli, L., Puerta, P., Wettstein, J. J., Rykaczewski, R. R., & Opiekun, M. (2019). Nonstationary environmental and community relationships in the North Pacific Ocean. Ecology, 100, e02760. https://doi.org/10.1002/ecy.2760.
Litzow, M. A., Hunsicker, M. E., Bond, N. A., Burke, B. J., Cunningham, C. J., Gosselin, J. L., Norton, E. L., Ward, E. J., & Zador, S. G. (2020). The changing physical and ecological meanings of North Pacific Ocean climate indices. Proceedings of the National Academy of Sciences of the United States of America, 117, 7665-7671. https://doi.org/10.1073/pnas.1921266117.
Litzow, M. A., & Mueter, F. J. (2014). Assessing the ecological importance of climate regime shifts: An approach from the North Pacific Ocean. Progress in Oceanography, 120, 110-119. https://doi.org/10.1016/j.pocean.2013.08.003.
Llope, M., Daskalov, G. M., Rouyer, T., Mihneva, V., Chan, K., Grishin, A. N., & Stenseth, N. C. (2011). Overfishing of top predators eroded the resilience of the Black Sea system regardless of the climate and anthropogenic conditions. Global Change Biology, 17, 1251-1265. https://doi.org/10.1111/j.1365-2486.2010.02331.x.
Ma, S., Liu, Y., Li, J., Fu, C., Ye, Z., Sun, P., Yu, H., Cheng, J., & Tian, Y. (2019). Climate-induced long-term variations in ecosystem structure and atmosphere-ocean-ecosystem processes in the Yellow Sea and East China Sea. Progress in Oceanography, 175, 183-197. https://doi.org/10.1016/j.pocean.2019.04.008.
Ma, S., Tian, Y., Fu, C., Yu, H., Li, J., Liu, Y., Cheng, J., Wan, R., & Watanabe, Y. (2021). Climate-induced nonlinearity in pelagic communities and nonstationary relationships with physical drivers in the Kuroshio ecosystem. Fish and Fisheries, 22, 1-17. https://doi.org/10.1111/faf.12502.
Ma, S., Tian, Y., Li, J., Yu, H., Cheng, J., Sun, P., Fu, C., Liu, Y., & Watanabe, Y. (2020). Climate variability patterns and their ecological effects on ecosystems in the northwestern North Pacific. Frontiers in Marine Science, 7, 546882. https://doi.org/10.3389/fmars.2020.546882.
Mollmann, C., & Diekmann, R. (2012). Marine ecosystem regime shifts induced by climate and overfishing: A review for the northern hemisphere. Advances in Ecological Research, 47, 303-347. https://doi.org/10.1016/B978-0-12-398315-2.00004-1.
Mollmann, C., Diekmann, R., Mullerkarulis, B., Kornilovs, G., Plikshs, M., & Axe, P. (2009). Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: A discontinuous regime shift in the Central Baltic Sea. Global Change Biology, 15, 1377-1393. https://doi.org/10.1111/j.1365-2486.2008.01814.x.
Mollmann, C., Mullerkarulis, B., Kornilovs, G., & John, M. A. S. (2008). Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: Regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES Journal of Marine Science, 65, 302-310. https://doi.org/10.1093/icesjms/fsm197.
Nakanowatari, T., Ohshima, K. I., & Wakatsuchi, M. (2007). Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1955-2004. Geophysical Research Letters, 34, 1955-2004. https://doi.org/10.1029/2006GL028243.
Otto, S. A., Kadin, M., Casini, M., Torres, M. A., & Blenckner, T. (2018). A quantitative framework for selecting and validating food web indicators. Ecological Indicators, 84, 619-631. https://doi.org/10.1016/j.ecolind.2017.05.045.
Palomares, M. L. D., & Pauly, D. (Eds.). (2021). SeaLifeBase. www.sealifebase.org, version (04/2021).
Puerta, P., Ciannelli, L., Rykaczewski, R. R., Opiekun, M., & Litzow, M. A. (2019). Do Gulf of Alaska fish and crustacean populations show synchronous non-stationary responses to climate? Progress in Oceanography, 175, 161-170. https://doi.org/10.1016/j.pocean.2019.04.002.
Qiu, Y., Lin, Z., & Wang, Y. (2010). Responses of fish production to fishing and climate variability in the northern South China Sea. Progress in Oceanography, 85, 197-212. https://doi.org/10.1016/j.pocean.2010.02.011.
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108, 4407. https://doi.org/10.1029/2002JD002670.
Reid, P. C., Hari, R. E., Beaugrand, G., Livingstone, D. M., Marty, C., Straile, D., Barichivich, J., Goberville, E., Adrian, R., Aono, Y., Brown, R., Foster, J., Groisman, P., Helaouet, P., Hsu, H. H., Kirby, R., Knight, J., Kraberg, A., Li, J., … Zhu, Z. (2016). Global impacts of the 1980s regime shift. Global Change Biology, 22, 682-703. https://doi.org/10.1111/gcb.13106.
Sakurai, Y. (2007). An overview of the Oyashio ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 2526-2542. https://doi.org/10.1016/j.dsr2.2007.02.007.
Samhouri, J. F., Andrews, K. S., Fay, G., Harvey, C. J., Hazen, E. L., Hennessey, S. M., Holsman, K., Hunsicker, M. E., Large, S. I., Marshall, K. N., Stier, A. C., Tam, J. C., & Zador, S. G. (2017). Defining ecosystem thresholds for human activities and environmental pressures in the California Current. Ecosphere, 8, e01860. https://doi.org/10.1002/ecs2.1860.
Scheffer, M. (2009). Critical transitions in nature and society. Princeton University Press.
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., Van Nes, E. H., Rietkerk, M., & Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 461, 53-59. https://doi.org/10.1038/nature08227.
Scheffer, M., & Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends in Ecology & Evolution, 18, 648-656. https://doi.org/10.1016/j.tree.2003.09.002.
Scheffer, M., Carpenter, S. R., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596. https://doi.org/10.1038/35098000.
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278, 1823-1830. https://doi.org/10.1098/rspb.2010.1295.
Tian, Y., Kidokoro, H., & Watanabe, T. (2006). Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades. Progress in Oceanography, 68, 217-237. https://doi.org/10.1016/j.pocean.2006.02.009.
Tian, Y., Kidokoro, H., Watanabe, T., & Iguchi, N. (2008). The late 1980s regime shift in the ecosystem of Tsushima warm current in the Japan/East Sea: Evidence from historical data and possible mechanisms. Progress in Oceanography, 77, 127-145. https://doi.org/10.1016/j.pocean.2008.03.007.
Tian, Y., Nashida, K., & Sakaji, H. (2013). Synchrony in the abundance trend of spear squid Loligo bleekeri in the Japan Sea and the Pacific Ocean with special reference to the latitudinal differences in response to the climate regime shift. ICES Journal of Marine Science, 70, 968-979. https://doi.org/10.1093/icesjms/fst015.
Tian, Y., Uchikawa, K., Ueda, Y., & Cheng, J. (2014). Comparison of fluctuations in fish communities and trophic structures of ecosystems from three currents around Japan: synchronies and differences. ICES Journal of Marine Science, 71, 19-34. https://doi.org/10.1093/icesjms/fst169.
Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 1098-1101. https://doi.org/10.1038/nature09329.
Tsimara, E., Vasilakopoulos, P., Koutsidi, M., Raitsos, D. E., Lazaris, A., & Tzanatos, E. (2021). An integrated traits resilience assessment of Mediterranean fisheries landings. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13533 (in press).
Tu, C., Tian, Y., & Hsieh, C. (2015). Effects of climate on temporal variation in the abundance and distribution of the demersal fish assemblage in the Tsushima Warm Current region of the Japan Sea. Fisheries Ocenanography, 23, 177-189. https://doi.org/10.1111/fog.12101.
Van Nes, E. H., & Scheffer, M. (2007). Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. The American Naturalist, 169, 738-747. https://doi.org/10.1086/516845.
Vasilakopoulos, P., & Marshall, C. T. (2015). Resilience and tipping points of an exploited fish population over six decades. Global Change Biology, 21, 1834-1847. https://doi.org/10.1111/gcb.12845.
Vasilakopoulos, P., Raitsos, D. E., Tzanatos, E., & Maravelias, C. D. (2017). Resilience and regime shifts in a marine biodiversity hotspot. Scientific Reports, 7, 13647. https://doi.org/10.1038/s41598-017-13852-9.
Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability and transformability in social-ecological systems. Ecology and Society, 9, 5.
Wood, S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics, 62, 1025-1036. https://doi.org/10.1111/j.1541-0420.2006.00574.x.
Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M., Alexander, M., Qiu, B., Visbeck, M., Chang, P., & Giese, B. (2012). Enhanced warming over the global subtropical western boundary currents. Nature Climate Change, 2(3), 161-166. https://doi.org/10.1038/nclimate1353.
Wu, B., & Wang, J. (2002). Winter Arctic oscillation, Siberian high and East Asian winter monsoon. Geophysical Research Letters, 29, 3-1-3-4. https://doi.org/10.1029/2002GL015373.
Yati, E., Minobe, S., Mantua, N., Ito, S., & Di Lorenzo, E. (2020). Marine ecosystem variations over the North Pacific and their linkage to large-Scale climate variability and change. Frontiers in Marine Science, 7, 578165. https://doi.org/10.3389/fmars.2020.578165.
Yatsu, A. (2019). Review of population dynamics and management of small pelagic fishes around the Japanese Archipelago. Fisheries Science, 85, 611-639. https://doi.org/10.1007/s12562-019-01305-3.
Yatsu, A., Chiba, S., Yamanaka, Y., Ito, S., Shimizu, Y., Kaeriyama, M., & Watanabe, Y. (2013). Climate forcing and the Kuroshio/Oyashio ecosystem. ICES Journal of Marine Science, 70, 922-933. https://doi.org/10.1093/icesjms/fst084.
Zeller, D., & Pauly, D. (2015). Reconstructing marine fisheries catch data. Sea Around Us. University of British Columbia.
Zhang, F. (2020). Early warning signals of population productivity regime shifts in global fisheries. Ecological Indicators, 115, 106371. https://doi.org/10.1016/j.ecolind.2020.106371.
Grant Information:
41861134037 National Natural Science Foundation of China; 41876177 National Natural Science Foundation of China; 41930534 National Natural Science Foundation of China; 2018YFD0900902 National Key R&D Program of China
Contributed Indexing:
Keywords: Northwestern Pacific; critical transition; ecological resilience; integrated resilience assessment; large marine ecosystem; warming
Entry Date(s):
Date Created: 20210726 Date Completed: 20211020 Latest Revision: 20211020
Update Code:
20240105
DOI:
10.1111/gcb.15815
PMID:
34309964
Czasopismo naukowe
Natural systems can undergo critical transitions, leading to substantial socioeconomic and ecological outcomes. "Ecological resilience" has been proposed to describe the capacity of natural systems to absorb external perturbation and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks. However, the mere application of ecological resilience in theoretical research and the lack of quantitative approaches present considerable obstacles for predicting critical transitions and understanding their mechanisms. Large marine ecosystems (LMEs) in the Northwestern Pacific are characterized by great biodiversity and productivity, as well as remarkable warming in recent decades. However, no information is available on the critical transitions and ecological resilience of LMEs in response to warming. Therefore, we applied an integrated resilience assessment framework to fisheries catch data from seven LMEs covering a wide range of regions, from tropical to subarctic, in the Northwestern Pacific to identify critical transitions, assess ecological resilience, and reconstruct folded stability landscapes, with a specific focus on the effects of warming. The results provide evidence of the occurrence of critical transitions, with fold bifurcation and hysteresis in response to increasing sea surface temperatures (SSTs) in the seven LMEs. In addition, these LMEs show similarities and synchronies in structure variations and critical transitions forced by warming. Both dramatic increases in SST and small fluctuations at the corresponding thresholds may trigger critical transitions. Ecological resilience decreases when approaching the tipping points and is repainted as the LMEs shift to alternative stable states with different resilient dynamics. Folded stability landscapes indicate that the responses of LMEs to warming are discontinuous, which may be caused by the reorganization of LMEs as their sensitivity to warming changes. Our study clarifies the nonlinear responses of LMEs to anthropogenic warming and provides examples of quantifying ecological resilience in empirical systems at unprecedented spatial and temporal scales.
(© 2021 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies