Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota.

Tytuł:
Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota.
Autorzy:
Wippel K; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Tao K; Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark.
Niu Y; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Zgadzaj R; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Kiel N; Cluster of Excellence on Plant Sciences, Düsseldorf, Germany.
Guan R; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Dahms E; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Zhang P; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Jensen DB; Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark.
Logemann E; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Radutoiu S; Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark. .
Schulze-Lefert P; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany. .; Cluster of Excellence on Plant Sciences, Düsseldorf, Germany. .
Garrido-Oter R; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany. .; Cluster of Excellence on Plant Sciences, Düsseldorf, Germany. .
Źródło:
Nature microbiology [Nat Microbiol] 2021 Sep; Vol. 6 (9), pp. 1150-1162. Date of Electronic Publication: 2021 Jul 26.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Publishing Group, [2016]-
MeSH Terms:
Microbiota*
Symbiosis*
Arabidopsis/*physiology
Bacteria/*isolation & purification
Lotus/*physiology
Plant Roots/*microbiology
Arabidopsis/microbiology ; Bacteria/classification ; Bacteria/genetics ; Bacterial Physiological Phenomena ; Lotus/microbiology ; Plant Roots/physiology ; Soil Microbiology
References:
Carrion, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019). (PMID: 3167289210.1126/science.aaw9285)
Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018). (PMID: 30388454621865410.1016/j.cell.2018.10.020)
Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019). (PMID: 3103693010.1038/s41587-019-0104-4)
Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012). (PMID: 2285920710.1038/nature11336)
Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA 115, E1157–E1165 (2018). (PMID: 29358405581943710.1073/pnas.1717617115)
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012). (PMID: 22859206407441310.1038/nature11237)
Yeoh, Y. K. et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat. Commun. 8, 215 (2017). (PMID: 28790312554875710.1038/s41467-017-00262-8)
Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015). (PMID: 2663363110.1038/nature16192)
Levy, A. et al. Genomic features of bacterial adaptation to plants. Nat. Genet. 50, 138–150 (2017). (PMID: 29255260595707910.1038/s41588-017-0012-9)
Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015). (PMID: 2618491510.1126/science.aaa8764)
Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017). (PMID: 28297714536406310.1038/nature21417)
Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019). (PMID: 31558832677476110.1038/s41559-019-0994-z)
Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017). (PMID: 2850297710.1038/nrg.2017.26)
Koenen, E. J. M. et al. The origin of the legumes is a complex paleopolyploid phylogenomic tangle closely associated with the Cretaceous–Paleogene (K–Pg) mass extinction event. Syst. Biol. 70, 508–526 (2021). (PMID: 3248363110.1093/sysbio/syaa041)
Thiergart, T. et al. Lotus japonicus symbiosis genes impact microbial interactions between symbionts and multikingdom commensal communities. mBio 10, e01833-19 (2019). (PMID: 31594815678687010.1128/mBio.01833-19)
Zgadzaj, R. et al. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc. Natl Acad. Sci. USA 113, E7996–E8005 (2016). (PMID: 27864511515041510.1073/pnas.1616564113)
Kremer, J. M. et al. FlowPot axenic plant growth system for microbiota research. Preprint at bioRxiv https://doi.org/10.1101/254953 (2018).
Madsen, E. B. et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637–640 (2003). (PMID: 1453459110.1038/nature02045)
Beilstein, M. A., Nagalingum, N. S., Clements, M. D., Manchester, S. R. & Mathews, S. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc. Natl Acad. Sci. USA.107, 18724–18728 (2010). (PMID: 20921408297300910.1073/pnas.0909766107)
Ojeda, D. I. et al. DNA barcodes successfully identified Macaronesian Lotus (Leguminosae) species within early diverged lineages of Cape Verde and mainland Africa. AoB Plants https://doi.org/10.1093/aobpla/plu050 (2014).
Clauss, M. J. & Mitchell-Olds, T. Population genetic structure of Arabidopsis lyrata in Europe. Mol. Ecol. 15, 2753–2766 (2006). (PMID: 1691119810.1111/j.1365-294X.2006.02973.x)
Steiner, J. J. & Garcia de los Santos, G. Adaptive ecology of Lotus corniculatus L. genotypes: I. Plant morphology and RAPD marker characterizations. Crop Sci. 41, 552–563 (2001). (PMID: 10.2135/cropsci2001.412552x)
Schlaeppi, K., Dombrowski, N., Garrido-Oter, R., Ver Loren van Themaat, E. & Schulze-Lefert, P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc. Natl Acad. Sci. USA 111, 585–592 (2013). (PMID: 24379374389615610.1073/pnas.1321597111)
Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020). (PMID: 32350464719741210.1038/s41586-020-2185-0)
Mun, T., Bachmann, A., Gupta, V., Stougaard, J. & Andersen, S. U. Lotus base: an integrated information portal for the model legume Lotus japonicus. Sci. Rep. 6, 39447 (2016). (PMID: 28008948518018310.1038/srep39447)
Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004). (PMID: 1508513610.1038/nature02485)
Xin, X. F. et al. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539, 524–529 (2016). (PMID: 27882964513501810.1038/nature20166)
Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J. & Katagiri, F. Network properties of robust immunity in plants. PLoS Genet. 5, e1000772 (2009). (PMID: 20011122278213710.1371/journal.pgen.1000772)
Bressan, M. et al. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 3, 1243–1257 (2009). (PMID: 1955403910.1038/ismej.2009.68)
Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018). (PMID: 2955610910.1038/s41564-018-0129-3)
Bednarek, P. Chemical warfare or modulators of defence responses—the function of secondary metabolites in plant immunity. Curr. Opin. Plant Biol. 15, 407–414 (2012). (PMID: 2244519010.1016/j.pbi.2012.03.002)
Klein, A. P. & Sattely, E. S. Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proc. Natl Acad. Sci. USA 114, 1910–1915 (2017). (PMID: 28154137533839410.1073/pnas.1615625114)
Pastorczyk, M. & Bednarek, P. in Advances in Botanical Research Vol. 80 (ed. Kopriva, S.) 171–198 (Elsevier, 2016).
Zhao, Y. et al. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 16, 3100–3112 (2002). (PMID: 1246463818749610.1101/gad.1035402)
Lapébie, P., Lombard, V., Drula, E., Terrapon, N. & Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. https://doi.org/10.1038/s41467-019-10068-5 (2019).
Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol., Evolution, Syst. 46, 1–23 (2015). (PMID: 10.1146/annurev-ecolsys-110411-160340)
Chase, J. M. Community assembly: when should history matter? Oecologia 136, 489–498 (2003). (PMID: 1283600910.1007/s00442-003-1311-7)
Batstone, R. T., O’Brien, A. M., Harrison, T. L. & Frederickson, M. E. Experimental evolution makes microbes more cooperative with their local host genotype. Science 370, 476–478 (2020). (PMID: 3309311210.1126/science.abb7222)
Agosta, S. J. & Klemens, J. A. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol. Lett. 11, 1123–1134 (2008). (PMID: 1877827410.1111/j.1461-0248.2008.01237.x)
Kinnunen, M. et al. A conceptual framework for invasion in microbial communities. ISME J. 10, 2773–2775 (2016). (PMID: 27137125514819610.1038/ismej.2016.75)
Litchman, E. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol. Lett. 13, 1560–1572 (2010). (PMID: 2105473310.1111/j.1461-0248.2010.01544.x)
Thiergart, T. et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat. Ecol. Evol. 4, 122–131 (2020). (PMID: 3190045210.1038/s41559-019-1063-3)
Broughton, W. J. & Dilworth, M. J. Control of leghaemoglobin synthesis in snake beans. Biochem. J. 125, 1075–1080 (1971). (PMID: 5144223117827110.1042/bj1251075)
Pfennig, N. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28, 283–288 (1978). (PMID: 10.1099/00207713-28-2-283)
Baudoin, E., Benizri, E. & Guckert, A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 35, 1183–1192 (2003). (PMID: 10.1016/S0038-0717(03)00179-2)
Lohmann, G. V. et al. Evolution and regulation of the Lotus japonicus LysM receptor gene family. Mol. Plant Microbe Interact. 23, 510–521 (2010). (PMID: 2019283710.1094/MPMI-23-4-0510)
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). (PMID: 20383131315657310.1038/nmeth.f.303)
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 27214047492737710.1038/nmeth.3869)
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013). (PMID: 10.1093/nar/gks121923193283)
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B. & Stevens, M. H. H. vegan: community ecology package (R Project, 2007).
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). (PMID: 2070969110.1093/bioinformatics/btq461)
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011). (PMID: 21700674315004410.1093/bioinformatics/btr381)
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013). (PMID: 2395577210.1038/nmeth.2604)
Wickham, H. ggplot2 - Elegant Graphics for Data Analysis Vol. 2 (Springer International Publishing, 2016).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170)
Tritt, A., Eisen, J. A., Facciotti, M. T. & Darling, A. E. An integrated pipeline for de novo assembly of microbial genomes. PLoS ONE 7, e42304 (2012). (PMID: 23028432344157010.1371/journal.pone.0042304)
Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012). (PMID: 2249575410.1093/bioinformatics/bts174)
Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019). (PMID: 30661755634946110.1016/j.cell.2019.01.001)
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019). (PMID: 31388474666256710.7717/peerj.7359)
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015). (PMID: 25977477448438710.1101/gr.186072.114)
Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199–D205 (2014). (PMID: 2421496110.1093/nar/gkt1076)
Wu, M. & Eisen, J. A. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 9, R151 (2008). (PMID: 18851752276087810.1186/gb-2008-9-10-r151)
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). (PMID: 21988835326169910.1038/msb.2011.75)
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 - approximately maximum-likelihood trees of large alignments. PLoS ONE 5, e9490 (2010). (PMID: 20224823283573610.1371/journal.pone.0009490)
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019). (PMID: 30931475660246810.1093/nar/gkz239)
Olm, M. R. et al. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems https://doi.org/10.1128/mSystems.00731-19 (2020).
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018). (PMID: 30504855626947810.1038/s41467-018-07641-9)
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018). (PMID: 30423086612928110.1093/bioinformatics/bty560)
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). (PMID: 10.1038/nbt.351927043002)
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. https://doi.org/10.12688/f1000research.7563.1 (2015).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8 (2014).
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012). (PMID: 22257669330711210.1093/bioinformatics/bts034)
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). (PMID: 25605792440251010.1093/nar/gkv007)
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). (PMID: 2720794310.1093/bioinformatics/btw313)
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010). (PMID: 20132535287287410.1186/gb-2010-11-2-r14)
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000). (PMID: 10802651303741910.1038/75556)
The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019). (PMID: 10.1093/nar/gky1055)
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012). (PMID: 22455463333937910.1089/omi.2011.0118)
Entry Date(s):
Date Created: 20210727 Date Completed: 20210915 Latest Revision: 20230206
Update Code:
20240105
PubMed Central ID:
PMC8387241
DOI:
10.1038/s41564-021-00941-9
PMID:
34312531
Czasopismo naukowe
Roots of different plant species are colonized by bacterial communities, that are distinct even when hosts share the same habitat. It remains unclear to what extent the host actively selects these communities and whether commensals are adapted to a specific plant species. To address this question, we assembled a sequence-indexed bacterial culture collection from roots and nodules of Lotus japonicus that contains representatives of most species previously identified using metagenomics. We analysed taxonomically paired synthetic communities from L. japonicus and Arabidopsis thaliana in a multi-species gnotobiotic system and detected signatures of host preference among commensal bacteria in a community context, but not in mono-associations. Sequential inoculation experiments revealed priority effects during root microbiota assembly, where established communities are resilient to invasion by latecomers, and that host preference of commensal bacteria confers a competitive advantage in their cognate host. Our findings show that host preference in commensal bacteria from diverse taxonomic groups is associated with their invasiveness into standing root-associated communities.
(© 2021. The Author(s).)
Comment in: Nat Microbiol. 2021 Sep;6(9):1103-1104. (PMID: 34408286)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies