Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Synergies at the level of motor units in single-finger and multi-finger tasks.

Tytuł:
Synergies at the level of motor units in single-finger and multi-finger tasks.
Autorzy:
Madarshahian S; Department of Kinesiology, The Pennsylvania State University, Rec. Hall-267, University Park, PA, 16802, USA.
Latash ML; Department of Kinesiology, The Pennsylvania State University, Rec. Hall-267, University Park, PA, 16802, USA. .
Źródło:
Experimental brain research [Exp Brain Res] 2021 Sep; Vol. 239 (9), pp. 2905-2923. Date of Electronic Publication: 2021 Jul 26.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer Verlag
MeSH Terms:
Fingers*
Hand*
Forearm ; Hand Strength ; Humans ; Muscle Contraction ; Muscle, Skeletal ; Psychomotor Performance
References:
Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016) Synergies in the space of control variables within the equilibrium-point hypothesis. Neurosci 315:150–161. (PMID: 10.1016/j.neuroscience.2015.12.012)
Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. In: Goodwin AW, Darian-Smith I (eds) Hand function and the neocortex. Springer Verlag, Berlin, pp 111–129. (PMID: 10.1007/978-3-642-70105-4_7)
Asaka T, Wang Y, Fukushima J, Latash ML (2008) Learning effects on muscle modes and multi-mode synergies. Exp Brain Res 184:323–338. (PMID: 1772458210.1007/s00221-007-1101-2)
Bernstein NA (1947) On the construction of movements. Medgiz, Moscow (in Russian).
Bruton M, O’Dwyer N (2018) Synergies in coordination: a comprehensive overview of neural, computational, and behavioral approaches. J Neurophysiol 120:2761–2774. (PMID: 3028138810.1152/jn.00052.2018)
Burgar CG, Valero-Cuevas FJ, Hentz VR (1997) Fine-wire electromyographic recording during force generation: application to index finger kinesiologic studies. Amer J Phys Med Rehab 76:494–501. (PMID: 10.1097/00002060-199711000-00012)
Butler TJ, Kilbreath SL, Gorman RB, Gandevia SC (2005) Selective recruitment of single motor units in human flexor digitorum superficialis muscle during flexion of individual fingers. J Physiol 567:301–309. (PMID: 15946972147417510.1113/jphysiol.2005.089201)
Christova P, Kossev A (2001) Human motor unit recruitment and derecruitment during long lasting intermittent contractions. J Electromyogr Kinesiol 11:189–196. (PMID: 1133514910.1016/S1050-6411(00)00052-3)
Contessa P, DeLuca CJ (2013) Neural control of muscle force: indications from a simulation model. J Neurophysiol 109:1548–1570. (PMID: 2323600810.1152/jn.00237.2012)
Cuadra C, Bartsch A, Tiemann P, Reschechtko S, Latash ML (2018) Multi-finger synergies and the muscular apparatus of the hand. Exp Brain Res 236:1383–1393. (PMID: 29532100593647110.1007/s00221-018-5231-5)
Danion F, Li S, Zatsiorsky VM, Latash ML (2002) Relations between surface EMG of extrinsic flexors and individual finger forces support the notion of muscle compartments. Eur J Appl Physiol 88:185–188. (PMID: 1243628910.1007/s00421-002-0700-7)
Danion F, Schöner G, Latash ML, Li S, Scholz JP, Zatsiorsky VM (2003) A force mode hypothesis for finger interaction during multi-finger force production tasks. Biol Cybern 88:91–98. (PMID: 1256722410.1007/s00422-002-0336-z)
Danna-Dos-Santos A, Slomka K, Zatsiorsky VM, Latash ML (2007) Muscle modes and synergies during voluntary body sway. Exp Brain Res 179:533–550. (PMID: 1722122210.1007/s00221-006-0812-0)
Danna-Dos-Santos A, Degani AM, Latash ML (2008) Flexible muscle modes and synergies in challenging whole-body tasks. Exp Brain Res 189:171–187. (PMID: 18521583255710210.1007/s00221-008-1413-x)
d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neurosci 6:300–308. (PMID: 1256326410.1038/nn1010)
De Luca CJ, Mambrito B (1987) Voluntary control of motor units in human antagonist muscles: coactivation and reciprocal activation. J Neurophysiol 58:525–542. (PMID: 365588110.1152/jn.1987.58.3.525)
De Freitas PB, Freitas SMSF, Lewis MM, Huang X, Latash ML (2018) Stability of steady hand force production explored across spaces and methods of analysis. Exp Brain Res 236:1545–1562. (PMID: 29564506598415310.1007/s00221-018-5238-y)
De Luca CJ, Chang SS, Roy SH, Kline JC, Nawab SH (2015) Decomposition of surface EMG signals from cyclic dynamic contractions. J Neurophysiol 113:1941–1951. (PMID: 2554022010.1152/jn.00555.2014)
Dominici N, Ivanenko YP, Cappellini G, d’Avella A, Mondì V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999. (PMID: 2209620210.1126/science.1210617)
Enoka RM, Robinson GA, Kossev AR (1989) Task and fatigue effects on low-threshold motor units in human hand muscle. J Neurophysiol 62:1344–1359. (PMID: 260062910.1152/jn.1989.62.6.1344)
Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 11:565–578.
Feldman AG (1980) Superposition of motor programs. I. Rhythmic forearm movements in man. Neuroscience 5:81–90. (PMID: 736684510.1016/0306-4522(80)90073-1)
Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ–model) for motor control. J Motor Behav 18:17–54. (PMID: 10.1080/00222895.1986.10735369)
Feldman AG (2015) Referent control of action and perception: Challenging conventional theories in behavioral science. Springer, NY. (PMID: 10.1007/978-1-4939-2736-4)
Fuglevand AJ, Dutoit AP, Johns RK, Keen DA (2006) Evaluation of plateau-potential-mediated “warm up” in human motor units. J Physiol 571:683–693. (PMID: 16423860180580310.1113/jphysiol.2005.099705)
Gelfand IM, Tsetlin ML (1962) On certain methods of control of complex systems. Adv Math Sci 17:103 (in Russian).
Gelfand IM, Gurfinkel VS, Fomin SV, Tsetlin ML (eds) (1971) Models of the structural-functional organization of certain biological systems. MIT Press, Cambridge.
Gorniak S, Zatsiorsky VM, Latash ML (2007) Hierarchies of synergies: an example of the two-hand, multi-finger tasks. Exp Brain Res 179:167–180. (PMID: 1710320610.1007/s00221-006-0777-z)
Gorniak S, Zatsiorsky VM, Latash ML (2009) Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 194:1–15. (PMID: 1904823610.1007/s00221-008-1663-7)
Heckman CJ, Gorassini MA, Bennett DJ (2005) Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve 31:135–156. (PMID: 10.1002/mus.20261)
Henneman E, Somjen G, Carpenter DO (1965) Excitability and inhibitibility of motoneurones of different sizes. J Neurophysiol 28:599–620. (PMID: 583548710.1152/jn.1965.28.3.599)
Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282. (PMID: 14724214166489710.1113/jphysiol.2003.057174)
Ivanenko YP, Poppele RE, Lacquaniti F (2006) Motor control programs and walking. Neuroscientist 12:339–348. (PMID: 1684071010.1177/1073858406287987)
Jeneson JA, Taylor JS, Vigneron DB, Willard TS, Carvajal L, Nelson SJ, Murphy-Boesch J, Brown TR (1990) 1H MR imaging of anatomical compartments within the finger flexor muscles of the human forearm. Magn Reson Med 15:491–496. (PMID: 223322810.1002/mrm.1910150316)
Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2008) Finger interdependence: linking the kinetic and kinematic variables. Hum Move Sci 27:408–422. (PMID: 10.1016/j.humov.2007.08.005)
Krishnamoorthy V, Goodman SR, Latash ML, Zatsiorsky VM (2003a) Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol Cybern 89:152–161. (PMID: 1290504310.1007/s00422-003-0419-5)
Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2003b) Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 152:281–292. (PMID: 1290493410.1007/s00221-003-1574-6)
Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2004) Muscle modes during shifts of the center of pressure by standing persons: effects of instability and additional support. Exp Brain Res 157:18–31. (PMID: 1498589710.1007/s00221-003-1812-y)
Krishnamoorthy V, Scholz JP, Latash ML (2007) The use of flexible arm muscle synergies to perform an isometric stabilization task. Clin Neurophysiol 118:525–537. (PMID: 17204456186626010.1016/j.clinph.2006.11.014)
Lang CE, Schieber MH (2003) Differential impairment of individuated finger movements in humans after damage to the motor cortex or the corticospinal tract. J Neurophysiol 90:1160–1170. (PMID: 1266035010.1152/jn.00130.2003)
Latash ML (2008) Synergy. Oxford University Press, New York. (PMID: 10.1093/acprof:oso/9780195333169.001.0001)
Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322. (PMID: 10.1123/mcj.14.3.294)
Latash ML (2012) The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res 217:1–5. (PMID: 22246105353204610.1007/s00221-012-3000-4)
Latash ML (2019) Physics of biological action and perception. Academic Press, New York.
Latash ML (2020a) On primitives in motor control. Mot Control 24:318–346. (PMID: 10.1123/mc.2019-0099)
Latash ML (ed) (2020b) Bernstein’s coordination of movements. Routledge, Abingdon.
Latash ML (2021) Laws of nature that define biological action and perception. Phys Life Rev 36:47–67. (PMID: 3286815910.1016/j.plrev.2020.07.007)
Latash ML, Huang X (2015) Neural control of movement stability: lessons from studies of neurological patients. Neuroscience 301:39–48. (PMID: 2604773210.1016/j.neuroscience.2015.05.075)
Latash ML, Zatsiorsky VM (1993) Joint stiffness: myth or reality? Hum Move Sci 12:653–692. (PMID: 10.1016/0167-9457(93)90010-M)
Latash ML, Zatsiorsky VM (2016) Biomechanics and motor control: defining central concepts. Academic Press, New York.
Latash ML, Scholz JF, Danion F, Schöner G (2001) Structure of motor variability in marginally redundant multi-finger force production tasks. Exp Brain Res 141:153–165. (PMID: 1171362710.1007/s002210100861)
Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308. (PMID: 10.1123/mcj.11.3.276)
Latash ML, Friedman J, Kim SW, Feldman AG, Zatsiorsky VM (2010) Prehension synergies and control with referent hand configurations. Exp Brain Res 202:213–229. (PMID: 2003339710.1007/s00221-009-2128-3)
Li ZM, Latash ML, Zatsiorsky VM (1998) Force sharing among fingers as a model of the redundancy problem. Exp Brain Res 119:276–286. (PMID: 955182810.1007/s002210050343)
Madarshahian S, Letizi J, Latash ML (2021) Synergic control of a single muscle: the example of flexor digitorum superficialis. J Physiol 599:1261–1279. (PMID: 3320637710.1113/JP280555)
Mariappan YK, Manduca A, Glaser KJ, Chen J, Amrami KK, Ehman RL (2010) Vibration imaging for localization of functional compartments of the extrinsic flexor muscles of the hand. J Magn Reson Imaging 31:1395–1401. (PMID: 20512892291194710.1002/jmri.22183)
Marzke MW (1992) Evolutionary development of the human thumb. Hand Clin 8:1–8. (PMID: 157291510.1016/S0749-0712(21)00687-9)
Mirakhorlo M, Van Beek N, Wesseling M, Maas H, Veeger HEJ, Jonkers I (2018) A musculoskeletal model of the hand and wrist: model definition and evaluation. Comput Methods Biomech Biomed Eng 21:548–557. (PMID: 10.1080/10255842.2018.1490952)
Nawab SH, Chang SS, De Luca CJ (2010) High-yield decomposition of surface EMG signals. Clin Neurophysiol 121:1602–1615. (PMID: 20430694293279310.1016/j.clinph.2009.11.092)
Negro F, Holobar A, Farina D (2009) Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharges. J Physiol 587:5925–5938. (PMID: 19840996280854910.1113/jphysiol.2009.178509)
Nichols TR (1994) A biomechanical perspective on spinal mechanisms of coordinated muscular action: an architecture principle. Acta Anat 151:1–13. (PMID: 787958810.1159/000147637)
Nichols TR (2018) Distributed force feedback in the spinal cord and the regulation of limb mechanics. J Neurophysiol 119:1186–1200. (PMID: 2921291410.1152/jn.00216.2017)
Olatsdottir H, Zatsiorsky VM, Latash ML (2005) Is the thumb a fifth finger? A study of digit interaction during force production tasks. Exp Brain Res 160:203–213. (PMID: 10.1007/s00221-004-2004-0)
Pilon J-F, De Serres SJ, Feldman AG (2007) Threshold position control of arm movement with anticipatory increase in grip force. Exp Brain Res 181:49–67. (PMID: 1734012410.1007/s00221-007-0901-8)
Reschechtko S, Latash ML (2017) Stability of hand force production: I. Hand level control variables and multi-finger synergies. J Neurophysiol 118:3152–3164. (PMID: 28904102581470910.1152/jn.00485.2017)
Santello M, Bianchi M, Gabiccini M, Ricciardi E, Salvietti G, Prattichizzo D, Ernst M, Moscatelli A, Jorntell H, Kappers AM, Kyriakopoulos K, Schaeffer AA, Castellini C, Bicchi A (2016) Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys Life Rev 17:1–23. (PMID: 26923030583966610.1016/j.plrev.2016.02.001)
Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. J Appl Physiol 96:2293–2300. (PMID: 1513301610.1152/japplphysiol.01063.2003)
Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306. (PMID: 1038261610.1007/s002210050738)
Scholz JP, Danion F, Latash ML, Schöner G (2002) Understanding finger coordination through analysis of the structure of force variability. Biol Cybern 86:29–39. (PMID: 1191821010.1007/s004220100279)
Shinohara M, Latash ML, Zatsiorsky VM (2003) Age effects on force production by the intrinsic and extrinsic hand muscles and finger interaction during maximal contraction tasks. J App Physiol 95:1361–1369. (PMID: 10.1152/japplphysiol.00070.2003)
Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93:609–613. (PMID: 1534272010.1152/jn.00681.2004)
Ting LH, McKay JL (2007) Neuromechanics of muscle synergies for posture and movement. Curr Opin Neurobiol 17:622–628. (PMID: 1830480110.1016/j.conb.2008.01.002)
Tresch MC, Jarc A (2009) The case for and against muscle synergies. Curr Opin Neurobiol 19:601–607. (PMID: 19828310281827810.1016/j.conb.2009.09.002)
Tresch MC, Cheung VC, d’Avella A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 95:2199–2212. (PMID: 1639407910.1152/jn.00222.2005)
Vandenberk MS, Kalmar JM (2014) An evaluation of paired motor unit estimates of persistent inward current in human motoneurons. J Neurophysiol 111:1877–1884. (PMID: 2452352410.1152/jn.00469.2013)
Zatsiorsky VM, Latash ML (2008) Multi-finger prehension: an overview. J Mot Behav 40:446–476. (PMID: 1878271910.3200/JMBR.40.5.446-476)
Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195. (PMID: 1076627110.1007/s002219900261)
Contributed Indexing:
Keywords: Finger; Hand; Hierarchy; Referent coordinate; Uncontrolled manifold
Entry Date(s):
Date Created: 20210727 Date Completed: 20210921 Latest Revision: 20210921
Update Code:
20240105
DOI:
10.1007/s00221-021-06180-y
PMID:
34312703
Czasopismo naukowe
We explored the organization of motor units recorded in the flexor digitorum superficialis into stable groups (MU-modes) and force-stabilizing synergies in spaces of MU-modes. Young, healthy participants performed one-finger and three-finger accurate cyclical force production tasks. Two wireless sensor arrays (Trigno Galileo, Delsys, Inc.) were placed over the proximal and distal portions of the muscle for surface recording and identification of motor unit action potentials. Principal component analysis with Varimax rotation and factor extraction was used to identify MU-modes. The framework of the uncontrolled manifold hypothesis was used to analyze inter-cycle variance in the space of MU-modes and compute the index of force-stabilizing synergy. Multiple linear regression between the first MU-mode in the three-finger task and the first MU-modes in the three single-finger tasks showed no differences between the data recorded by the two electrodes suggesting that MU-modes were unlikely to be synonymous with muscle compartments. Multi-MU-mode synergies stabilizing task force were documented across all tasks. In contrast, there were no force-stabilizing synergies in the three-finger task analyzed in the space of individual finger forces. Our results confirm the synergic organization of motor units in single-finger tasks and, for the first time, expand this result to multi-finger tasks. We offer an interpretation of the findings within the theoretical scheme of control with spatial referent coordinates expanded to the analysis of individual motor units. The results confirm trade-offs between synergies at different hierarchical levels and expand this notion to intra-muscle synergies.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies