Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Integrated control of the cattle tick, Rhipicephalus australis (Acari: Ixodidae), in New Caledonia through the Pasture and Cattle Management method.

Tytuł:
Integrated control of the cattle tick, Rhipicephalus australis (Acari: Ixodidae), in New Caledonia through the Pasture and Cattle Management method.
Autorzy:
Hüe T; Laboratoire de Parasitologie Animale, Institut Agronomique néo-Calédonien (IAC), BP73, Païta, New Caledonia. .
Berger A; Laboratoire de Parasitologie Animale, Institut Agronomique néo-Calédonien (IAC), BP73, Païta, New Caledonia.
Wang HH; Ecological Systems Laboratory, Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA.
Grant WE; Ecological Systems Laboratory, Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA.
Teel PD; Department of Entomology, Texas A&M AgriLife Research, College Station, TX, USA.
de León AAP; Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, USDA, 2700 Fredericksburg Rd., Kerrville, TX, 78028, USA.; USDA-ARS San Joaquin Valley Agricultural Sciences Center, 9611 S. Riverbend Av., Parlier, CA, 93648, USA.
Źródło:
Parasitology research [Parasitol Res] 2021 Aug; Vol. 120 (8), pp. 2749-2758. Date of Electronic Publication: 2021 Jul 29.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer International, c1987-
MeSH Terms:
Acaricides*
Cattle Diseases*/drug therapy
Cattle Diseases*/prevention & control
Rhipicephalus*
Tick Control*/methods
Tick Infestations*/drug therapy
Tick Infestations*/prevention & control
Tick Infestations*/veterinary
Animals ; Cattle ; New Caledonia
References:
Barré N, Delathière JM (2010) Stratégies de lutte contre la tique du bétail en Nouvelle-Calédonie. Synthèse des connaissances. IAC Edition, pp  108.
Beugnet F, Chardonnet L (1995) Tick resistance to pyrethroids in New Caledonia. Vet Parasitol 56:325–338. https://doi.org/10.1016/0304-4017(94)00686-7. (PMID: 10.1016/0304-4017(94)00686-77754609)
Bianchi M, Barré N (2003) Factors affecting the detachment rhythm of engorged female of Boophilus microplus (Acari : Ixodidae) from Charolais steers in New Caledonia. Vet Parasitol 112:325–336. https://doi.org/10.1016/S0304-4017(02)00271-6.
Chevillon C, Ducornez S, de Meeûs T, Koffi BB, Gaïa H, Delathière JM, Barré N (2007) Accumulation of acaricide resistance genes in Rhipicephalus microplus (Acari: Ixodidae) populations from New Caledonia Island. Vet Parasitol 147:276–288. (PMID: 10.1016/j.vetpar.2007.05.003)
Corrêa L, Santos P (2003) Manejo e utilização de plantas forrageiras dos gêneros Panicum, Brachiaria e Cynodon. Embrapa Pecuária Sudeste. São Carlos. EMBRAPA Edition, pp 33p.
Corson MS, Teel PD, Grant WE (2003) Simulating detection of cattle-fever tick (Boophilus spp.) infestations in rotational grazing systems. Ecol Model 167:277–286. https://doi.org/10.1016/S0304-3800(03)00194-7. (PMID: 10.1016/S0304-3800(03)00194-7)
Cruz BC, de Lima Mendes AF, Maciel WG, Dos Santos IB, Gomes LVC, Felippelli G, Teixeira WFP, Ferreira LL, Soares VE, Lopes WDZ, de Oliviera GP, da Costa AJ (2020) Biological parameters for Rhipicephalus microplus in the field and laboratory and estimation of its annual number of generations in a tropical region. Parasitol Res 119(8):2421–2430.
De Barros MND, Riet-Correa F, Azevedo SS, Labruna MB (2017) Off-host development and survival of Rhipicephalus (Boophilus) microplus in the Brazilian semiarid. Vet. Parasitol.: Regional Stud. Rep 9:17–24. https://doi.org/10.1016/j.vprsr.2017.04.004. (PMID: 10.1016/j.vprsr.2017.04.004)
De Vos AJ (1979) Epidemiology and control of bovine babesiosis in South Africa. J S Afr Vet Assoc 50(4):357–362. (PMID: 576018)
Desquesnes M, Vignon L (1987) A preliminary study aimed at integrating pasture rotation with tick control in New Caledonia. Rev Elev Med Vet Nouv Cal 10:13–19.
Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x. (PMID: 10.1111/j.1365-2656.2008.01390.x18397250)
Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data an 38:367–378. (PMID: 10.1016/S0167-9473(01)00065-2)
Frisch JE, Munro RK, O’Neill CJ (1987) Some factors related to calf crops of Brahman, Brahman crossbred and Hereford× Shorthorn cows in a stressful tropical environment. Anim Reprod Sci 15(1–2):1–26. https://doi.org/10.1016/0378-4320(87)90002-9.
Gerry A, Murillo A (2019) Promoting biosecurity through insect management at animal facilities. In book: Biosecurity in animal production and veterinary medicine: from principles to practice (pp.243–281). https://doi.org/10.1079/9781789245684.0243.
Gomes LVC, Lopes WDZ, Cruz BC, Teixeira WF, Felippelli G, Maciel WG, Bicuette MA, Ruivo MA, Colli MHA, Carvalho RS, Martinez AC, Soares VE, da Costa AJ (2015) Acaricidal effects of fluazuron (2.5 mg/kg) and a combination of fluazuron (1.6 mg/kg) + ivermectin (0.63 mg/kg), administered at different routes, against Rhipicephalus (Boophilus) microplus parasitizing cattle. Exp Parasitol 153:22–28. https://doi.org/10.1016/j.exppara.2015.02.004. (PMID: 10.1016/j.exppara.2015.02.00425728230)
Harley KLS (1966) Studies on the survival of the non-parasitic stages of the cattle tick Boophilus microplus in three climatically dissimilar districts of north Queensland. Aust J Agr Res 17(3):387–410. https://doi.org/10.1071/AR9660387. (PMID: 10.1071/AR9660387)
Harley KLS, Wilkinson PR (1964) A comparison of cattle tick control by “conventional” acaricidal treatment, planned dipping, and pasture spelling. Aus J Agr Res 15(5):841–853. https://doi.org/10.1071/AR9640841. (PMID: 10.1071/AR9640841)
Hernández-A AF, Teel PD, Corson MS, Grant WE (2000) Simulation of rotational grazing to evaluate integrated pest management strategies for Boophilus microplus (Acari: Ixodidae) in Venezuela. Vet Parasitol 92(2):139–149. https://doi.org/10.1016/S0304-4017(00)00282-X. (PMID: 10.1016/S0304-4017(00)00282-X10946137)
Hosmer DW, Lemeshow S (2000) Applied logistic regression. John Wiley and Sons Inc, New York, NY. https://doi.org/10.1002/0471722146. (PMID: 10.1002/0471722146)
Hüe T (2019) Livestock ticks in New Caledonia: review on 75 years of presence and 60 years of research. Local history for global learning. Rev Elev Med Vet Pays Trop 72(3):123–132. (PMID: 10.19182/remvt.31781)
Hüe T, Fontfreyde C (2019) Development of a new approach of pasture management to control Rhipicephalus microplus infestation. Trop Anim Health pro 51(7):1989–1995. https://doi.org/10.1007/s11250-019-01899-x. (PMID: 10.1007/s11250-019-01899-x)
Hüe T, Petermann J, Bonnefond R, Mermoud I, Rantoen D, Vuocolo T (2017) Experimental efficacy of a vaccine against Rhipicephalus australis. Exp Appl Acarol 73:245–256. https://doi.org/10.1007/s10493-017-0184-0. (PMID: 10.1007/s10493-017-0184-029110171)
Hüe T, Fontfreyde C, Wang H-H, Grant WE, Teel PD, Pérez de León AA (2020) Optimizing long-acting acaricide use for integrated tick management of Rhipicephalus australis-infesting cattle in New Caledonia. Trop Anim Health Prod 53:384. https://doi.org/10.1007/s11250-021-02816-x.
Hurtado OJB, Giraldo-Ríos C (2019) Economic and health impact of the ticks in production animals. In Ticks and tick-borne pathogens; Abubakar, M., Perera, P.K., Eds.; IntechOpen: London, UK.
Jones CJ, Kitron UD (2000) Population of Ixodes scapularis (Acari: Ixodidae) are modulated by drought at a Lyme disease focus in Illinois. J Med Entomol 37:408–415. https://doi.org/10.1603/0022-2585(2000)037%5B0408:POISAI%5D2.0.CO;2. (PMID: 10.1603/0022-2585(2000)037%5B0408:POISAI%5D2.0.CO;215535585)
Leal B, Thomas D, Dearth R (2018) Population dynamics of off-host Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) larvae in response to habitat and seasonality in south Texas. Vet Sci 5:33. https://doi.org/10.3390/vetsci5020033. (PMID: 10.3390/vetsci50200336024560)
Moré DD, Cardoso FF, Mudadu MA, Malagó-Jr W, Gulias-Gomes CC, Sollero BP, Ibelli AMG, Coutinho LL, Regitano LCA (2019) Network analysis uncovers putative genes affecting resistance to tick infestation in Braford cattle skin. BMC Genomics 20:998. https://doi.org/10.1186/s12864-019-6360-3. (PMID: 10.1186/s12864-019-6360-3318567206923859)
Nicaretta JE, dos Santos JB, Couto LFM, Heller LM, Cruvinel LB, de Melo Júnior RD, de Assis Cavalcantea AS, Zapa DMB, Ferreira LL, de Oliveira Monteiro CM, Soares VE, Lopes WDZ (2020) Evaluation of rotational grazing as a control strategy for Rhipicephalus microplus in a tropical region. Res Vet Sci 131:92–97. https://doi.org/10.1016/j.rvsc.2020.04.006. (PMID: 10.1016/j.rvsc.2020.04.00632325299)
Pérez de León AA, Teel PD, Li A, Ponnusamy L, Roe RM (2014) Advancing integrated tick management to mitigate burden of tick-borne diseases. Outlooks Pest Manag 25:382–389. https://doi.org/10.1564/v25_dec_10. (PMID: 10.1564/v25_dec_10)
Petermann J, Cauquil L, Hurlin JC, Gaia H, Hüe T (2016) Survey of cattle tick, Riphicephalus (Boophilus) microplus, resistance to amitraze and deltamethrin in New Caledonia. Vet Parasitol 217:64–70. https://doi.org/10.1016/j.vetpar.2015.12.010. (PMID: 10.1016/j.vetpar.2015.12.01026827863)
Pound J, George J, Kammlah D, Lohmeyer K, Davey R (2010) Evidence for role of white-tailed deer (Artiodactyla: Cervidae) in epizootiology of cattle ticks and southern cattle ticks (Acari: Ixodidae) in reinfestations along the Texas/Mexico border in south Texas: a review and update. J Econ Entomol 103:211–218. https://doi.org/10.1603/EC09359. (PMID: 10.1603/EC0935920429430)
Ridgeway G (2006) The gbm package, version 1.6–3. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.9958&rep=rep1&type=pdf . Accessed 24 Feb 2019.
R Core Team (2017) R: A language and environment for statistical com puting. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
Salas M, Corniaux C, Desvals L, Dulieu D, Grimaud P, Houchot A, Toutain B (1994) Caractéristiques et valeurs alimentaires des fourrages de Nouvelle-Calédonie. CIRAD-EMVT, Montpellier, p 182.
Seifert GW (1971) Variations between and within breeds of cattle in resistance to field infestations of the cattle tick (Boophilus microplus). Crop Pasture Sci 22(1):159–168. https://doi.org/10.1071/AR9710159. (PMID: 10.1071/AR9710159)
Sutherst RW, Kerr JD, Maywald GF, Stegeman DA (1983) The effect of season and nutrition on the resistance of cattle to the tick Boophilus microplus. Aus J Agr Res 34(3):329–339. https://doi.org/10.1071/ar9830329. (PMID: 10.1071/ar9830329)
Sutherst RW, Maywald GF, Bourne AS, Sutherland ID, Stegeman DA (1988) Ecology of the cattle tick (Boophilus microplus) in subtropical Australia. II. Resistance of different breeds of cattle. Crop Pasture Sci. 39(2), 299-308. https://doi.org/10.1071/AR9880299.
Sutherst RW, Bourne AS (2006) The effect of desiccation and low temperature on the viability of eggs and emerging larvae of the tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodidae). Int J Parasitol 36(2):193–200. https://doi.org/10.1016/j.ijpara.2005.09.007. (PMID: 10.1016/j.ijpara.2005.09.00716300766)
Teague WR, Grant WE, Wang H-H (2015) Assessing optimal configurations of multi-paddock grazing strategies in tallgrass prairie using a simulation model. J Environ Manage 150:262–273. https://doi.org/10.1016/j.jenvman.2014.09.027. (PMID: 10.1016/j.jenvman.2014.09.02725527985)
Teel PD, Marin S, Grant WE, Stuth JW (1997) Simulation of host-parasite-landscape interactions: influence of season and habitat on cattle fever tick (Boophilus sp.) population dynamics in rotational grazing systems. Ecol Model 97:87–97. https://doi.org/10.1016/S0304-3800(96)00076-2. (PMID: 10.1016/S0304-3800(96)00076-2)
Teel PD, Grant WE, Marín SL, Stuth JW (1998) Simulated cattle fever tick infestations in rotational grazing systems. J Range Manage 51:501–508. https://doi.org/10.2307/4003365. (PMID: 10.2307/4003365)
Utech KBW, Wharton RH, Kerr JD (1978) Resistance to Boophilus microplus (Canestrini) in different breeds of cattle. Aust J Agric Res 29(4):885–895. https://doi.org/10.1071/AR9780885. (PMID: 10.1071/AR9780885)
Wang H-H, Teel PD, Grant WE, Schuster G, Pérez de León AA (2016) Simulated interactions of white-tailed deer (Odocoileus virginianus), climate variation and habitat heterogeneity on southern cattle tick (Rhipicephalus (Boophilus) microplus) eradication methods in south Texas. USA Ecol Model 342:82–96. https://doi.org/10.1016/j.ecolmodel.2016.10.001. (PMID: 10.1016/j.ecolmodel.2016.10.001)
Wang H-H, Corson MS, Grant WE, Teel PD (2017) Quantitative models of Rhipicephalus (Boophilus) ticks: historical review and synthesis. Ecosphere 8(9):e01942. https://doi.org/10.1002/ecs2.1942. (PMID: 10.1002/ecs2.1942)
Wang H-H, Teel PD, Grant WE, Soltero F, Urdaz J, Ramírez JEP, Miller RJ, Pérez de León AA (2019) Simulation tools for assessment of tick suppression treatments of Rhipicephalus (Boophilus) microplus on non-lactating dairy cattle in Puerto Rico. Parasite Vector 12:185. https://doi.org/10.1186/s13071-019-3443-6. (PMID: 10.1186/s13071-019-3443-6)
Wang H-H, Grant WE, Teel PD, Lohmeyer KH, Pérez de León AA (2020a) Enhanced biosurveillance of high-consequence invasive pests: southern cattle fever ticks, Rhipicephalus (Boophilus) microplus, on livestock and wildlife. Parasite Vector 13(1):1–13. https://doi.org/10.1186/s13071-020-04366-x. (PMID: 10.1186/s13071-020-04366-x)
Wang H-H, Grant WE, Teague R (2020) Modeling rangelands as spatially-explicit complex adaptive systems. J Environ Manage 269:110762. (PMID: 10.1016/j.jenvman.2020.110762)
Wharton RH, Harley KLS, Wilkinson PR, Utech KB, Kelley BM (1969) A comparison of cattle tick control by pasture spelling, planned dipping, and tick-resistant cattle. Aust J Agr Res 20(4):783–797. https://doi.org/10.1071/ar9690783. (PMID: 10.1071/ar9690783)
Wilkinson PR (1957) The spelling of pasture in cattle tick control. Aust J Agr Res 8(4):414–423. https://doi.org/10.1071/ar9570414. (PMID: 10.1071/ar9570414)
Wilkinson PR (1964) Pasture spelling as a control measure for cattle ticks in southern Queensland. Aust J Agr Res 15(5):822–840. https://doi.org/10.1071/AR9640822. (PMID: 10.1071/AR9640822)
Wilkinson PR (1970) Factors affecting the distribution and abundance of the cattle tick in Australia: observations and hypotheses. Acarologia 12(3):492–508.
Yeoman GH, Walker JB, Ross JPJ, Docker TM (1967) The ixodid ticks of Tanzania. A study of the zoogeography of the Ixodidae of an East African country. The ixodid ticks of Tanzania. A study of the zoogeography of the Ixodidae of an East African country. Commonwealth Institute of Entomology Edition, London,  pp 215.
Grant Information:
58-3094-8-010 Agricultural Research Service; 58-3094-9-016 Agricultural Research Service; 3094-32000-042-00-D Agricultural Research Service
Contributed Indexing:
Keywords: Cattle tick; Integrated tick control; Pasture and Cattle Management method; Rhipicephalus australis
Substance Nomenclature:
0 (Acaricides)
Entry Date(s):
Date Created: 20210729 Date Completed: 20211013 Latest Revision: 20211013
Update Code:
20240105
DOI:
10.1007/s00436-021-07235-3
PMID:
34322733
Czasopismo naukowe
Development of the Pasture and Cattle Management (PCM) method is a priority to control the cattle tick, Rhipicephalus australis, in New Caledonia. The PCM method provides the foundation for sustainable integrated tick control because approximately 95% of cattle ticks in infested pastures are off the host in the non-parasitic life stages, and the practice of treating cattle intensely with chemical acaricides is a risk for the emergence of resistance to these active ingredients in commercial acaricidal products available for veterinary use. Here, we report the findings of an assessment survey to document the utility of the PCM method. Analyses of questionnaire data provided by 21 beef cattle producers describing their management of 37 herds informed how to (1) assess the ability of PCM to reduce acaricide use and (2) prioritize best practices and define recommendations to breeders promoting efficient tick control with minimum acaricide use. Boosted regression tree analysis showed a significant (p = 0.002) reduction of ≈33% in the number of acaricide treatments from 7.9 to 5.3 per year by using PCM. Of the 24 factors identified as potentially affecting acaricide use, six factors accounted for ≈86% of the variability in number of acaricide treatments applied annually. The six most influential factors involved farm characteristics as well as pasture and herd management recommendations. These results demonstrated the usefulness of PCM for integrated control of R. australis infestations while reducing acaricide use to improve cattle production in New Caledonia.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies