Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Long-term nitrogen isotope dynamics in Encelia farinosa reflect plant demographics and climate.

Tytuł:
Long-term nitrogen isotope dynamics in Encelia farinosa reflect plant demographics and climate.
Autorzy:
Driscoll AW; School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, USA.
Kannenberg SA; School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, USA.
Ehleringer JR; School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, USA.
Źródło:
The New phytologist [New Phytol] 2021 Nov; Vol. 232 (3), pp. 1226-1237. Date of Electronic Publication: 2021 Aug 24.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Asteraceae*
Nitrogen*
Demography ; Nitrogen Isotopes/analysis ; Plant Leaves/chemistry ; Soil
References:
Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17: 1031-1041.
Austin AT, Vitousek PM. 1998. Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113: 519-529.
BassiriRad H, Constable JVH, Lussenhop J, Kimball BA, Norby RJ, Oechel WC, Reich PB, Schlesinger WH, Zitzer S, Sehtiya HL et al. 2003. Widespread foliage δ15N depletion under elevated CO2: inferences for the nitrogen cycle. Global Change Biology 9: 1582-1590.
Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Scheipl F, Gronthendieck G, Green P et al. 2019. Lme4: linear mixed-effects models using ‘Eigen’ and S4. Journal of Statistical Software 67: 1-48.
Beguería S, Vicente-Serrano SM, Reig F, Latorre B. 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology 34: 3001-3023.
Billings S, Schaeffer S, Zitzer S, Charlet T, Smith S, Evans R. 2002a. Alterations of nitrogen dynamics under elevated carbon dioxide in an intact Mojave Desert ecosystem: evidence from nitrogen-15 natural abundance. Oecologia 131: 463-467.
Billings SA, Schaeffer SM, Evans RD. 2002b. Trace N gas losses and N mineralization in Mojave Desert soils exposed to elevated CO2. Soil Biology and Biochemistry 34: 1777-1784.
Brenner DL, Amundson R, Baisden WT, Kendall C, Harden J. 2001. Soil N and 15N variation with time in a California annual grassland ecosystem. Geochimica et Cosmochimica Acta 65: 4171-4186.
Charley JL, West NE. 1975. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. Journal of Ecology 63: 945-963.
Comstock J. 2001. Steady-state isotopic fractionation in branched pathways using plant uptake of NO3 - as an example. Planta 214: 220-234.
Comstock J, Ehleringer J. 1986. Canopy dynamics and carbon gain in response to soil water availability in Encelia frutescens gray, a drought-deciduous shrub. Oecologia 68: 271-278.
Constable JVH, Bassirirad H, Lussenhop J, Zerihun A. 2001. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Tree Physiology 21: 83-91.
Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang L. 2015a. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil 396: 1-26.
Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A et al. 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183: 980-992.
Craine JM, Elmore AJ, Wang L, Aranibar J, Bauters M, Boeckx P, Crowley BE, Dawes MA, Delzon S, Fajardo A et al. 2018. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology & Evolution 2: 1735-1744.
Craine JM, Elmore AJ, Wang L, Augusto L, Baisden WT, Brookshire ENJ, Cramer MD, Hasselquist NJ, Hobbie EA, Kahmen A et al. 2015b. Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports 5: 1-8.
Dlugokencky EJ, Mund JW, Crotwell AM, Crotwell MJ, Thoning KW. 2021. Atmospheric carbon dioxide dry air mole fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1968-2019, v.2021-02.
Driscoll AW, Bitter NQ, Sandquist DR, Ehleringer JR. 2020. Multidecadal records of intrinsic water-use efficiency in the desert shrub Encelia farinosa reveal strong responses to climate change. Proceedings of the National Academy of Sciences, USA 117: 18161-18168.
Ehleringer JR, Sandquist DR. 2018. A tale of ENSO, PDO, and increasing aridity impacts on drought-deciduous shrubs in the Death Valley region. Oecologia 187: 879-895.
Elmore AJ, Craine JM, Nelson DM, Guinn SM. 2017. Continental scale variability of foliar nitrogen and carbon isotopes in Populus balsamifera and their relationships with climate. Scientific Reports 7: 1-9.
Evans RD. 2001. Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science 6: 121-126.
Evans RD, Ehleringer JR. 1994. Water and nitrogen dynamics in an arid woodland. Oecologia 99: 233-242.
Farquhar GD, Wetselaar R, Weir B. 1983. Gaseous nitrogen losses from plants. In: Freney JR, Simpson JR, eds. Developments in plant and soil sciences. Dordrecht, the Netherlands: Springer Netherlands, 159-180.
Gebauer RLE, Ehleringer JR. 2000. Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81: 1415-1424.
Handley LL, Raven JA. 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant, Cell & Environment 15: 965-985.
Handley LL, Scrimgeour CM. 1997. Terrestrial plant ecology and 15N natural abundance: the present limits to interpretation for uncultivated systems with original data from a Scottish old field. In: Begon M, Fitter AH, eds. Advances in ecological research. San Diego, CA, USA: Academic Press, 133-212.
Hiltbrunner E, Körner C, Meier R, Braun S, Kahmen A. 2019. Data do not support large-scale oligotrophication of terrestrial ecosystems. Nature Ecology & Evolution 3: 1285-1286.
Hobbie EA, Högberg P. 2012. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytologist 196: 367-382.
Hobbie EA, Macko SA, Williams M. 2000. Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122: 273-283.
Hobbie EA, Ouimette AP. 2009. Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95: 355-371.
Högberg P. 1997. Tansley review no. 95 15N natural abundance in soil-plant systems. New Phytologist 137: 179-203.
James JJ, Richards JH. 2007. Influence of temporal heterogeneity in nitrogen supply on competitive interactions in a desert shrub community. Oecologia 152: 721-727.
Jobbágy EG, Jackson RB. 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53: 51-77.
Johnson JE, Berry JA. 2013. The influence of leaf-atmosphere NH3(g) exchange on the isotopic composition of nitrogen in plants and the atmosphere. Plant, Cell & Environment 36: 1783-1801.
Kalcsits LA, Buschhaus HA, Guy RD. 2014. Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants. Physiologia Plantarum 151: 293-304.
Kalcsits LA, Min X, Guy RD. 2015. Interspecific variation in leaf-root differences in δ15N among three tree species grown with either nitrate or ammonium. Trees 29: 1069-1078.
Kolb KJ, Evans RD. 2002. Implications of leaf nitrogen recycling on the nitrogen isotope composition of deciduous plant tissues. New Phytologist 156: 57-64.
Koyama A, Harlow B, Evans RD. 2019. Greater soil carbon and nitrogen in a Mojave Desert ecosystem after 10 years exposure to elevated CO2. Geoderma 355: 113915.
Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82: 1-26.
Luo W, Wang X, Sardans J, Wang Z, Dijkstra FA, Lü XT, Peñuelas J, Han X. 2018. Higher capability of C3 than C4 plants to use nitrogen inferred from nitrogen stable isotopes along an aridity gradient. Plant and Soil 428: 93-103.
Ma JY, Sun W, Liu XN, Chen FH. 2012. Variation in the stable carbon and nitrogen isotope composition of plants and soil along a precipitation gradient in Northern China. PLoS ONE 7: e51894.
Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46: 45-65.
McCalley CK, Sparks JP. 2008. Controls over nitric oxide and ammonia emissions from Mojave Desert soils. Oecologia 156: 871-881.
McCalley CK, Sparks JP. 2009. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326: 837-840.
McCalley CK, Strahm BD, Sparks KL, Eller ASD, Sparks JP. 2011. The effect of long-term exposure to elevated CO2 on nitrogen gas emissions from Mojave Desert soils. Journal of Geophysical Research: Biogeosciences 116: G03022.
Murphy BP, Bowman DMJS. 2009. The carbon and nitrogen isotope composition of Australian grasses in relation to climate. Functional Ecology 23: 1040-1049.
Natelhoffer KJ, Fry B. 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal 52: 1633-1640.
Ridolfi L, Laio F, D’Odorico P. 2008. Fertility island formation and evolution in dryland ecosystems. Ecology and Society 13: 5-18.
Robinson D. 2001. δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution 16: 153-162.
Schade JD, Hobbie SE. 2005. Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry 73: 541-553.
Schlesinger WH, Pilmanis AM. 1998. Plant-soil interactions in deserts. Biogeochemistry 42: 169-187.
Schlesinger WH, Raikes JA, Hartley AE, Cross AF. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77: 364-374.
Schweiger PF. 2016. Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder. Journal of Plant Physiology 205: 84-92.
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. 2019. Soil survey geographic (SSURGO) database. [WWW document] https://sdmdataaccess.sc.egov.usda.gov [accessed 23 August 2021].
von Sperber C, Chadwick OA, Casciotti KL, Peay KG, Francis CA, Kim AE, Vitousek PM. 2017. Controls of nitrogen cycling evaluated along a well-characterized climate gradient. Ecology 98: 1117-1129.
Templer PH, Arthur MA, Lovett GM, Weathers KC. 2007. Plant and soil natural abundance δ15N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia 153: 399-406.
Titus JH, Nowak RS, Smith SD. 2002. Soil resource heterogeneity in the Mojave Desert. Journal of Arid Environments 52: 269-292.
Vallano DM, Sparks JP. 2013. Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient. Oecologia 172: 47-58.
Van Der Heyden F, Stock WD. 1996. Regrowth of a semiarid shrub following simulated browsing: the role of reserve carbon. Functional Ecology 10: 647-653.
Walker L, Thompson D, Landau F. 2001. Experimental manipulations of fertile islands and nurse plant effects in the Mojave Desert, USA. Western North American Naturalist 61: 25-35.
Wang C, Wang X, Liu D, Wu H, Lü X, Fang Y, Cheng W, Luo W, Jiang P, Shi J et al. 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications 5: 1-8.
Wang X, Jiang Y, Ren H, Yu FH, Li MH. 2019. Leaf and soil δ15N patterns along elevational gradients at both treelines and shrublines in three different climate zones. Forests 10: 557.
Whitford WG. 2002. Ecology of desert systems. London, UK: Elseiver.
Yoneyama T, Matsumaru T, Usui K, Engelaar WMHG. 2001. Discrimination of nitrogen isotopes during absorption of ammonium and nitrate at different nitrogen concentrations by rice (Oryza sativa L.) plants. Plant, Cell & Environment 24: 133-139.
Contributed Indexing:
Keywords: Encelia farinosa; Mojave Desert; age; climate; desert shrub; intra-plant fractionation; nitrogen concentration; nitrogen isotope ratio
Substance Nomenclature:
0 (Nitrogen Isotopes)
0 (Soil)
N762921K75 (Nitrogen)
Entry Date(s):
Date Created: 20210805 Date Completed: 20211018 Latest Revision: 20211018
Update Code:
20240105
DOI:
10.1111/nph.17668
PMID:
34352127
Czasopismo naukowe
While plant δ 15 N values have been applied to understand nitrogen (N) dynamics, uncertainties regarding intraspecific and temporal variability currently limit their application. We used a 28 yr record of δ 15 N values from two Mojave Desert populations of Encelia farinosa to clarify sources of population-level variability. We leveraged > 3500 foliar δ 15 N observations collected alongside structural, physiological, and climatic data to identify plant and environmental contributors to δ 15 N values. Additional sampling of soils, roots, stems, and leaves enabled assessment of the distribution of soil N content and δ 15 N, intra-plant fractionations, and relationships between soil and plant δ 15 N values. We observed extensive within-population variability in foliar δ 15 N values and found plant age and foliar %N to be the strongest predictors of individual δ 15 N values. There were consistent differences between root, stem, and leaf δ 15 N values (spanning c. 3‰), but plant and bulk soil δ 15 N values were unrelated. Plant-level variables played a strong role in influencing foliar δ 15 N values, and interannual relationships between climate and δ 15 N values were counter to previously recognized spatial patterns. This long-term record provides insights regarding the interpretation of δ 15 N values that were not available from previous large-scale syntheses, broadly enabling more effective application of foliar δ 15 N values.
(© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies