Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays.

Tytuł:
Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays.
Autorzy:
Tintelott M; Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany.
Pachauri V; Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany.
Ingebrandt S; Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany.
Vu XT; Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany.
Źródło:
Sensors (Basel, Switzerland) [Sensors (Basel)] 2021 Jul 29; Vol. 21 (15). Date of Electronic Publication: 2021 Jul 29.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, c2000-
MeSH Terms:
Biosensing Techniques*
Nanowires*
Humans ; Silicon ; Transistors, Electronic
References:
Nano Lett. 2007 Oct;7(10):3106-11. (PMID: 17894518)
Chem Rev. 2019 Aug 14;119(15):9136-9152. (PMID: 30995019)
ACS Appl Nano Mater. 2020 Sep 25;3(9):8522-8536. (PMID: 36733606)
Nature. 2007 Feb 1;445(7127):519-22. (PMID: 17268465)
Nat Nanotechnol. 2015 Sep;10(9):734-5. (PMID: 26329108)
Analyst. 2015 May 21;140(10):3630-41. (PMID: 25869990)
ACS Nano. 2015 May 26;9(5):4872-81. (PMID: 25817336)
Anal Chim Acta. 2014 May 12;825:1-25. (PMID: 24767146)
Langmuir. 2018 Sep 4;34(35):10217-10229. (PMID: 30085682)
Nano Lett. 2011 Sep 14;11(9):3974-8. (PMID: 21848308)
Nanotechnology. 2018 Apr 27;29(17):175202. (PMID: 29446349)
Nat Nanotechnol. 2012 May 27;7(6):401-7. (PMID: 22635097)
ACS Omega. 2016 Jul 31;1(1):84-92. (PMID: 30023473)
Anal Chem. 2019 Oct 1;91(19):12568-12573. (PMID: 31483135)
Materials (Basel). 2018 May 11;11(5):. (PMID: 29751688)
Science. 2001 Aug 17;293(5533):1289-92. (PMID: 11509722)
Biosens Bioelectron. 2017 Dec 15;98:437-448. (PMID: 28711826)
ACS Sens. 2017 Jan 27;2(1):69-79. (PMID: 28722429)
ACS Omega. 2018 Aug 01;3(8):8471-8482. (PMID: 31458975)
Biopolymers. 2008;90(3):450-8. (PMID: 17618518)
Nanotechnology. 2008 Apr 23;19(16):165703. (PMID: 21825655)
Anal Chem. 2007 May 1;79(9):3291-7. (PMID: 17407259)
Sci Technol Adv Mater. 2017 Jan 6;18(1):17-25. (PMID: 28179955)
J Biol Eng. 2016 Feb 02;10:3. (PMID: 26839585)
Science. 2006 Aug 25;313(5790):1100-4. (PMID: 16931757)
Trends Biotechnol. 2019 Jan;37(1):86-99. (PMID: 30126620)
Nanotechnology. 2010 Jan 8;21(1):015501. (PMID: 19946164)
Appl Phys Lett. 2011 Jun 27;98(26):264107-2641073. (PMID: 21799538)
Nano Lett. 2014 Mar 12;14(3):1614-9. (PMID: 24479700)
Biosens Bioelectron. 2004 Jul 15;19(12):1723-31. (PMID: 15142607)
Sensors (Basel). 2010;10(3):1679-715. (PMID: 22294894)
ACS Nano. 2018 Jul 24;12(7):6577-6587. (PMID: 29932634)
Nat Nanotechnol. 2011 Nov 27;6(12):773-83. (PMID: 22120529)
Nat Protoc. 2006;1(4):1711-24. (PMID: 17487154)
Biosens Bioelectron. 2013 Jul 15;45:252-9. (PMID: 23500372)
Biosens Bioelectron. 2011 Oct 15;28(1):239-42. (PMID: 21820303)
Analyst. 1996 Mar;121(3):29R-32R. (PMID: 8729652)
Lab Chip. 2004 Feb;4(1):42-6. (PMID: 15007439)
Adv Sci (Weinh). 2019 Jun 03;6(15):1900522. (PMID: 31406669)
Nano Lett. 2010 Feb 10;10(2):547-52. (PMID: 19908823)
Sensors (Basel). 2015 Jan 14;15(1):1635-75. (PMID: 25594599)
Nanotechnology. 2009 Nov 25;20(47):475501. (PMID: 19858563)
Adv Mater. 2019 Jul;31(30):e1806739. (PMID: 31094032)
Nanotechnology. 2019 May 3;30(18):184002. (PMID: 30654356)
Nanotechnology. 2011 Feb 18;22(7):075206. (PMID: 21233538)
ACS Appl Mater Interfaces. 2013 Jun 12;5(11):5214-8. (PMID: 23651227)
Nanoscale Res Lett. 2016 Dec;11(1):406. (PMID: 27639579)
Anal Chim Acta. 2009 Aug 4;647(1):14-30. (PMID: 19576381)
Biosens Bioelectron. 2013 Jul 15;45:245-51. (PMID: 23500371)
Essays Biochem. 2016 Jun 30;60(1):81-90. (PMID: 27365038)
J Am Chem Soc. 2017 Aug 16;139(32):11207-11213. (PMID: 28712286)
Anal Bioanal Chem. 2020 Oct;412(25):6777-6788. (PMID: 32725311)
Anal Chim Acta. 2012 Oct 24;749:1-15. (PMID: 23036462)
Nat Biotechnol. 2005 Oct;23(10):1294-301. (PMID: 16170313)
Microsyst Nanoeng. 2017 Sep 25;3:17075. (PMID: 31057889)
Nano Lett. 2010 Nov 10;10(11):4721-6. (PMID: 20942385)
Sci Rep. 2015 Jul 21;5:12286. (PMID: 26197105)
Curr Org Chem. 2010 Jan;14(2):138-147. (PMID: 20622973)
Micromachines (Basel). 2020 Dec 31;12(1):. (PMID: 33396324)
Grant Information:
391107823 Deutsche Forschungsgemeinschaft
Contributed Indexing:
Keywords: biosensor; device-to-device variation; silicon nanowire field-effect transistor; surface modification; top-down fabrication
Substance Nomenclature:
Z4152N8IUI (Silicon)
Entry Date(s):
Date Created: 20210810 Date Completed: 20210811 Latest Revision: 20240403
Update Code:
20240403
PubMed Central ID:
PMC8347659
DOI:
10.3390/s21155153
PMID:
34372390
Czasopismo naukowe
Silicon nanowire field-effect transistors (SiNW-FET) have been studied as ultra-high sensitive sensors for the detection of biomolecules, metal ions, gas molecules and as an interface for biological systems due to their remarkable electronic properties. "Bottom-up" or "top-down" approaches that are used for the fabrication of SiNW-FET sensors have their respective limitations in terms of technology development. The "bottom-up" approach allows the synthesis of silicon nanowires (SiNW) in the range from a few nm to hundreds of nm in diameter. However, it is technologically challenging to realize reproducible bottom-up devices on a large scale for clinical biosensing applications. The top-down approach involves state-of-the-art lithography and nanofabrication techniques to cast SiNW down to a few 10s of nanometers in diameter out of high-quality Silicon-on-Insulator (SOI) wafers in a controlled environment, enabling the large-scale fabrication of sensors for a myriad of applications. The possibility of their wafer-scale integration in standard semiconductor processes makes SiNW-FETs one of the most promising candidates for the next generation of biosensor platforms for applications in healthcare and medicine. Although advanced fabrication techniques are employed for fabricating SiNW, the sensor-to-sensor variation in the fabrication processes is one of the limiting factors for a large-scale production towards commercial applications. To provide a detailed overview of the technical aspects responsible for this sensor-to-sensor variation, we critically review and discuss the fundamental aspects that could lead to such a sensor-to-sensor variation, focusing on fabrication parameters and processes described in the state-of-the-art literature. Furthermore, we discuss the impact of functionalization aspects, surface modification, and system integration of the SiNW-FET biosensors on post-fabrication-induced sensor-to-sensor variations for biosensing experiments.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies